New from KamLAND

Neutrino 2004
Paris

Results
The KamLAND Collaboration

T. Araki, 1 K. Eguchi, 1 S. Enomoto, 1 K. Furuno, 1 K. Ichimura, 1 H. Ikeda, 1 K. Inoue, 1 K. Ishihara, 1
T. Iwamoto, 1, * T. Kawashima, 1 Y. Kishimoto, 1 M. Koga, 1 Y. Koseki, 1 T. Maeda, 1 T. Mitsui, 1 M. Motoki, 1
K. Nakajima, 1 H. Ogawa, 1 K. Owada, 1 J.-S. Ricol, 1 I. Shimizu, 1 J. Shirai, 1 F. Suekane, 1 A. Suzuki, 1 K. Tada, 1
O. Tajima, 1 K. Tamae, 1 Y. Tsuda, 1 H. Watanabe, 1 J. Busenitz, 2 T. Classen, 2 Z. Djurcic, 2 G. Keefer, 2
K. McKinney, 2 D.-M. Mei, 2, † A. Piepke, 2 E. Yakushev, 2 B.E. Berger, 3 Y.D. Chan, 3 M.P. Decowski, 3 D.A. Dwyer, 3
S.J. Freedman, 3 Y. Fu, 3 B.K. Fujikawa, 3 J. Goldman, 3 F. Gray, 3 K.M. Heeger, 3 K.T. Lesko, 3 K.-B. Luk, 3
H. Murayama, 3 A.W.P. Poon, 3 H.M. Steiner, 3 L.A. Winslow, 3 G.A. Horton-Smith, 4 C. Mauger, 4 R.D. McKeown, 4
P. Vogel, 4 C.E. Lane, 5 T. Miletic, 5 P.W. Gorham, 6 G. Guillian, 6 J.G. Learned, 6 J. Maricic, 6 S. Matsuno, 6
S. Pakvasa, 6 S. Dazeley, 7 S. Hatakeyama, 7 A. Rojas, 7 R. Svoboda, 7 B.D. Dieterle, 8 J. Detwiler, 9 G. Gratta, 9
K. Ishii, 9 N. Tolich, 9 Y. Uchida, 9, † M. Batygov, 10 W. Bugg, 10 Y. Efremenko, 10 Y. Kamyshkov, 10 A. Kozlov, 10
(The KamLAND Collaboration)

1 Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
2 Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA
3 Physics Department, University of California at Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4 W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA
5 Physics Department, Drexel University, Philadelphia, Pennsylvania 19104, USA
6 Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
7 Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
8 Physics Department, University of New Mexico, Albuquerque, New Mexico 87131, USA
9 Physics Department, Stanford University, Stanford, California 94305, USA
10 Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
11 Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Physics Departments at Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill
12 Institute of High Energy Physics, Beijing 100039, People’s Republic of China
13 CEN Bordeaux-Gradignan, IN2P3-CNRS and University Bordeaux I, F-33175 Gradignan Cedex, France
Nuclear reactors are very intense sources of $\bar{\nu}_e$ deriving from beta-decay of the neutron-rich fission fragments.

Yield:
- $200\text{MeV} / \text{fission}$
- $6\bar{\nu}_e / \text{fission}$

Look for a deficit of $\bar{\nu}_e$ and spectral distortions at a distance L.
A specific signature is provided by the inverse-β reaction

\[\bar{\nu}_e + p \rightarrow e^+ + n \]

\[\tau \approx 200 \, \mu s \]

\[p + n \rightarrow d + \gamma (2.2 \, \text{MeV}) \]

Event tagging by coincidence in time, space and energy of the neutron capture

\[E_{\bar{\nu}} \text{measurement} \]

\[E_{\bar{\nu}} \cong T_{e^+} + T_n + (M_n - M_p) + m_{e^+} \]

Threshold: \(E_{\bar{\nu}} > 1.8 \, \text{MeV} \)

→ only \(\sim 1.5 \) antineutrinos/fission can be detected
The $\bar{\nu}_e$ energy spectrum

Reactor ν_e spectrum (a.u.)

Observed spectrum (a.u.)
Neutrino 2004
New Results from KamLAND

~1 km high
Mt Ikenoyama
Neutrino 2004 New Results from KamLAND

KamLAND:
Kamioka Liquid scintillator
AntiNeutrino Detector

- 1 kton liq. Scint. Detector in the Kamiokande cavern
- 1325 17" fast PMTs
- 554 20" large area PMTs
- 34% photocathode coverage
- H₂O Cerenkov veto counter
The completed detector, looking up
Scintillator is a blend of 20% pseudocumene and 80% dodecane.

Different density paraffines are used to tune the density of buffer to 4×10^{-4} of that of the scintillator.

PPO concentration is 1.52 g/l in scintillator.
Many reactors contribute to the antineutrino flux at KamLAND

<table>
<thead>
<tr>
<th>Site</th>
<th>Dist (km)</th>
<th>Cores (#)</th>
<th>P_{therm} (GW)</th>
<th>Flux ($\text{cm}^{-2} \text{s}^{-1}$)</th>
<th>Rate noosc * ($\text{yr}^{-1} \text{kt}^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kashiwazaki</td>
<td>160</td>
<td>7</td>
<td>24.3</td>
<td>4.1×10^5</td>
<td>254.0</td>
</tr>
<tr>
<td>Ohi</td>
<td>179</td>
<td>4</td>
<td>13.7</td>
<td>1.9×10^5</td>
<td>114.3</td>
</tr>
<tr>
<td>Takahama</td>
<td>191</td>
<td>4</td>
<td>10.2</td>
<td>1.2×10^5</td>
<td>74.3</td>
</tr>
<tr>
<td>Tsuruga</td>
<td>138</td>
<td>2</td>
<td>4.5</td>
<td>1.0×10^5</td>
<td>62.5</td>
</tr>
<tr>
<td>Hamaoka</td>
<td>214</td>
<td>4</td>
<td>10.6</td>
<td>1.0×10^5</td>
<td>62.0</td>
</tr>
<tr>
<td>Mihama</td>
<td>146</td>
<td>3</td>
<td>4.9</td>
<td>1.0×10^5</td>
<td>62.0</td>
</tr>
<tr>
<td>Sika</td>
<td>88</td>
<td>1</td>
<td>1.6</td>
<td>9.0×10^4</td>
<td>55.2</td>
</tr>
<tr>
<td>Fukushima1</td>
<td>349</td>
<td>6</td>
<td>14.2</td>
<td>5.1×10^4</td>
<td>31.1</td>
</tr>
<tr>
<td>Fukushima2</td>
<td>345</td>
<td>4</td>
<td>13.2</td>
<td>4.8×10^4</td>
<td>29.5</td>
</tr>
<tr>
<td>Tokai2</td>
<td>295</td>
<td>1</td>
<td>3.3</td>
<td>1.6×10^4</td>
<td>10.1</td>
</tr>
<tr>
<td>Onagawa</td>
<td>431</td>
<td>3</td>
<td>6.5</td>
<td>1.5×10^4</td>
<td>9.3</td>
</tr>
<tr>
<td>Simane</td>
<td>401</td>
<td>2</td>
<td>3.8</td>
<td>1.0×10^4</td>
<td>6.3</td>
</tr>
<tr>
<td>Ikata</td>
<td>561</td>
<td>3</td>
<td>6.0</td>
<td>8.3×10^3</td>
<td>5.1</td>
</tr>
<tr>
<td>Genkai</td>
<td>755</td>
<td>4</td>
<td>10.1</td>
<td>7.8×10^3</td>
<td>4.8</td>
</tr>
<tr>
<td>Sendai</td>
<td>830</td>
<td>2</td>
<td>5.3</td>
<td>3.4×10^3</td>
<td>2.1</td>
</tr>
<tr>
<td>Tomari</td>
<td>783</td>
<td>2</td>
<td>3.3</td>
<td>2.3×10^3</td>
<td>1.4</td>
</tr>
<tr>
<td>South Korea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulchin</td>
<td>712</td>
<td>4</td>
<td>11.5</td>
<td>9.9×10^3</td>
<td>6.1</td>
</tr>
<tr>
<td>Yonggwang</td>
<td>986</td>
<td>6</td>
<td>17.4</td>
<td>7.8×10^3</td>
<td>4.8</td>
</tr>
<tr>
<td>Kori</td>
<td>735</td>
<td>4</td>
<td>9.2</td>
<td>7.5×10^3</td>
<td>4.6</td>
</tr>
<tr>
<td>Wolsong</td>
<td>709</td>
<td>4</td>
<td>8.2</td>
<td>7.1×10^3</td>
<td>4.3</td>
</tr>
<tr>
<td>Total Nominal</td>
<td>70</td>
<td>181.7</td>
<td>1.3 \times 10^6</td>
<td>803.8</td>
<td></td>
</tr>
</tbody>
</table>

* $E_{\nu} > 3.4 \text{MeV}$

$E_{\text{prompt}} > 2.6 \text{MeV}$

Detailed power and fuel Composition calculation used

From electrical power Japanese average fuel used

Neutrino 2004

New Results from KamLAND
A brief history of KamLAND

<table>
<thead>
<tr>
<th>Event</th>
<th>Dates</th>
<th>Live time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start data taking</td>
<td>Jan 2002</td>
<td>-</td>
</tr>
<tr>
<td>Run A (data-set of 1st paper)</td>
<td>Mar 9 - Oct 6 2002</td>
<td>145.4*</td>
</tr>
<tr>
<td>Electronics upgrade & 20” PMT commissioning</td>
<td>Jan/Feb 2003</td>
<td>-</td>
</tr>
<tr>
<td>Run B</td>
<td>Oct - Jan 11 2004</td>
<td>369.7</td>
</tr>
<tr>
<td>Data-set presented here†</td>
<td>Mar 9, 2002 - Jan 11, 2004</td>
<td>515.1</td>
</tr>
</tbody>
</table>

*Was 145.1 with old analysis

A limited range of baselines contribute to the flux of reactor antineutrinos at Kamioka

Over the data period Reported here

Korean reactors 3.4±0.3%
Rest of the world +JP research reactors 1.1±0.5%
Japanese spent fuel 0.04±0.02%
Vertexing is performed using timing from the 17” PMTs.
Tagged cosmogenics can be used for calibration

Fit to data shows that ^{12}B:$^{12}\text{N} \sim 100:1$

- $^{12}\text{B}$$\bullet$\hspace{1cm}$\tau=29.1\text{ms}$\hspace{1cm}Q=13.4\text{MeV}$
- ^{12}N\hspace{1cm}$\tau=15.9\text{ms}$\hspace{1cm}Q=17.3\text{MeV}$

Chi2 / ndf = 650.3 / 495
const = 48.38 ± 0.3711
B12 = 3.166e+04 ± 208.1
decay time [msec] = 29.76 ± 0.2706
Energy calibration uses discrete γ and $^{12}\text{B}/^{12}\text{N}$

$\sigma/E \sim 6.2\%$ at 1MeV

Carefully include Birks law, Cherenkov and light absorption/optics to obtain constants for γ and e-type depositions
Estimate of total volume and fiducial fraction

flow meter meas.
purification tank meas.
3,000 m³ tank meas.

spallation neutrons

${}^{12}\text{B}/{}^{12}\text{N}$
Fraction of volume inside the fiducial radius verified using μ-produced $^{12}\text{B}/^{12}\text{N}$ and n (assumed uniform)
Selecting antineutrinos, $E_{\text{prompt}} > 2.6 \text{MeV}$

- $R_{\text{prompt, delayed}} < 5.5 \text{ m}$
- $\Delta R_{e-n} < 2 \text{ m}$
- $0.5 \mu\text{s} < \Delta T_{e-n} < 1 \text{ ms}$
- $1.8 \text{ MeV} < E_{\text{delayed}} < 2.6 \text{ MeV}$
- $2.6 \text{ MeV} < E_{\text{prompt}} < 8.5 \text{ MeV}$

Tagging efficiency 89.8%

...In addition:
- 2s veto for showering/bad μ
- 2s veto in a $R = 3\text{m}$ tube along track

Dead-time 9.7%
<table>
<thead>
<tr>
<th>Systematic</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scintillator volume</td>
<td>2.1</td>
</tr>
<tr>
<td>Fiducial fraction</td>
<td>4.2</td>
</tr>
<tr>
<td>Energy threshold</td>
<td>2.3</td>
</tr>
<tr>
<td>Cuts efficiency</td>
<td>1.6</td>
</tr>
<tr>
<td>Live time</td>
<td>0.06</td>
</tr>
<tr>
<td>Reactor $P_{thermal}$</td>
<td>2.1</td>
</tr>
<tr>
<td>Fuel composition</td>
<td>1.0</td>
</tr>
<tr>
<td>Time lag</td>
<td>0.01</td>
</tr>
<tr>
<td>Antineutrino spectrum</td>
<td>2.5</td>
</tr>
<tr>
<td>Antineutrino x-section</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>6.5</td>
</tr>
</tbody>
</table>
Results

Observed events 258
No osc. expected 365±24(syst)
Background 7.5±1.3

<table>
<thead>
<tr>
<th>Background</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accidentals</td>
<td>2.69±0.02</td>
</tr>
<tr>
<td>8He/9Li</td>
<td>4.8±0.9</td>
</tr>
<tr>
<td>μ-induced n</td>
<td><0.89</td>
</tr>
<tr>
<td>Total</td>
<td>7.5±1.3</td>
</tr>
</tbody>
</table>

Inconsistent with simple $1/R^2$ propagation at 99.995% CL

$$(\text{Observed-Background})/\text{Expected} = 0.686±0.044(\text{stat})±0.045(\text{syst})$$

Caveat: this specific number does not have an absolute meaning in KamLAND, since, with oscillations, it depends on which reactors are on/off

(766.3 ton·yr, ~4.7× the statistics of the first paper)
2003 saw a substantial dip in reactor antineutrino flux
Good correlation with reactor flux

90% CL

Expected for no oscillations

χ^2=5.4/4

Fit constrained through known background

χ^2=2.1/4

~0.03 for 3TW hypothetical Earth core reactor

But a horizontal line still gives a decent fit with χ^2=5.4/4
Very clean measurement

Expect 1.5 n\(^{-12}\text{C}\) captures

Accidental background
Energy spectrum now adds substantial information

Best fit to oscillations:
\[\Delta m^2 = 8.3 \cdot 10^{-5} \text{ eV}^2 \]
\[\sin^2 2\theta = 0.83 \]

Straightforward \(\chi^2 \) on the histo is 19.6/11

Using equal probability bins \(\chi^2/\text{dof}=18.3/18 \) (goodness of fit is 42%)

A fit to a simple rescaled reactor spectrum is excluded at 99.89% CL (\(\chi^2=43.4/19 \))
Neutrino 2004 New Results from KamLAND

\[\Delta m^2 = 8.3 \cdot 10^{-5} \text{ eV}^2 \]

\[\sin^2 2\theta = 0.83 \]

LMA2 excluded at 99.6\% CL

"LMA0" disfavored at 94\% CL
\[\Delta m^2 = 8.3 \cdot 10^{-5} \text{ eV}^2 \]

\[\sin^2 2\theta = 0.83 \]

First KamLAND result

\[\Delta m^2 = 6.9 \times 10^{-5} \text{ eV}^2 \]

\[\sin^2 2\theta = 1.0 \]

Neutrino 2004

New Results from KamLAND
A shape-only fit gives similar results.

\[\Delta m^2 = 8.3 \cdot 10^{-5} \text{ eV}^2 \]

\[\sin^2 2\theta = 0.98 \]
KamLAND uses a range of L and it cannot assign a specific L to each event. Nevertheless, the ratio of detected/expected for $L_0/E \ (\text{or } 1/E)$ is an interesting quantity, as it decouples the oscillation pattern from the reactor energy spectrum.

![Graph showing the ratio of L_0/E against L_0/E (km/MeV). The graph includes KamLAND data points, a best-fit oscillation curve, and a hypothetical single 180km baseline experiment. The analysis threshold is marked at 2.6MeV. There is no oscillation expectation marked with a dashed green line.]
More exotic, non-oscillations models for the antineutrino channel start being less favored by data.

Decay* excluded at 95% CL

Decoherence† excluded at 94% CL

Combined solar $\nu -$ KamLAND 2-flavor analysis

$\Delta m^2_{12} = 8.2^{+0.6}_{-0.5} \times 10^{-5} \text{ eV}^2$

$\tan^2 \theta_{12} = 0.40^{+0.09}_{-0.07}$
Conclusions

KamLAND reactor exposure: 766.3 ton·yr (470% increase)

Data consistent with large flux swings in 2003

Spectrum distortions now quite significant, shape-only very powerful

Best KamLAND fit to oscillations $\Delta m=8.3 \cdot 10^{-5}$ eV2, $\sin^22\theta=0.83$

LMA2 is now excluded

Together with solar ν

$$\Delta m_{12}^2 = 8.2^{+0.6}_{-0.5} \times 10^{-5} \, eV^2; \tan^2 \theta_{12} = 0.40^{+0.09}_{-0.07}$$

Welcome to precision neutrino physics!