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Preface

In this collection of work, I will first guide the reader toward an understanding of optical

tweezers, a technique used to trap small refractive particles, such as glass microspheres or

living cells. In 2019, Arthur Ashkin was awarded part of the Nobel Prize in Physics for his

development of this technique, and he made many of the initial strides in the field.

With a general understanding of optical tweezers, I will discuss the specific setup and

implementation constructed in our group at Stanford, especially those aspects that are

particularly unique or novel to the apparatus. All of the work presented has been performed

with optically trapped silica microspheres in vacuum, using a single-beam trapping technique

with interferometric readout.

I will then move to a discussion of a number of technical developments with metrological

applications including: force field microscopy, direct measurements of a levitated micro-

sphere’s mass and radius, control of the microsphere’s rotational degrees of freedom, and

residual gas sensing.

To conclude, I will explore some of the fundamental science goals of the project, in-

cluding results from searches for fifth forces related to both dark energy and more general

modifications to Newtonian gravity that might arise from new physics that manifest in the

submillimeter regime.
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2.3 A schematic diagram of the fiber-optic system, depicting the source laser

and all components up to the point of projection into free-space. The trap

acousto-optic modulator (AOM) is usually operated at 150MHz, while the

reference beam AOM is operated at 149.375MHz. All fiber components are

single-mode and polarization-maintaining, and custom spliced for high power

operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 A schematic diagram of the input optics, from the point of projection into

free-space, to the beam entering the experimental chamber. . . . . . . . . . . 39

2.5 (left) A schematic cross-section of the trapping lenses, shielding electrodes,

and the housing structure for both. (upper right) The cubical cavity which

constitutes the trapping region. (lower right) A photograph through the pri-

mary viewing window, where the microsphere is visible due to high-angle

scattering of the trapping laser. The image was captured with a cell-phone

camera, which retains some sensitivity at 1064 nm. In the schematic views,

the foreground electrode has been suppressed, while in the photograph, it was

intentionally removed in order to see the trapped microsphere. . . . . . . . . . 43

2.6 A schematic cross-section of the stack of stages, with a typical attractor de-

vice mounted (see Chapters 7 and 8, and Appendix G). The electrode cube,

including the bore through which the device is inserted into the trap, is visible

on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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2.7 A schematic depiction of the knife-edge technique used to characterize the

spot size and divergence of the optical trap. A gold-coated silicon cantilever

is scanned across the trapping beam at various axial positions above and below

the focus, while the output power from the trap is monitored. As the knife-

edge covers and uncovers the beam, the photodiode measures the integral

given by Equation (2.1), from which the beam profile can be recovered. . . . 47

2.8 (left) Typical results from a beam-profiling measurement for scanning the

knife-edge in both x (top) and y (bottom), with the bottom surface of the

knife-edge positioned nearest to the focus, at h = 40 µm. The data suggest the

presence of a halo and/or diffraction rings with ∼few% of the maximum beam

intensity. (right) Second moment of the marginalized intensity distribution

from beam-profiling as a function of axial position over the full range of the

knife-edge’s motion, fit to Equation (2.3). The plot includes a dashed line

demonstrating some interpretation of the ideal design performance, i.e. the

second moment expected if the paraxial approximation was completely valid,

the optical system was perfectly aligned, and the beam was actually an ideal

Gaussian beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.9 (left) A schematic depiction of the optical system used to separate light

retroreflected retroreflected by a trapped microsphere, combine it with a refer-

ence beam, and subsequently convert the optical interference to an electronic

signal. (right) A photo of the same system, with components annotated. . . . 51

2.10 (left) A schematic depiction of the output optical system which handles the

light transmitted through a trapped microsphere, de-magnifying the beam to

reduce spot size, superposing with a reference beam, and finally, converting

the optical interference to an electronic signal. (right) A photo of the same

system, with components annotated. . . . . . . . . . . . . . . . . . . . . . . . 54

2.11 Interference contrast vs radial position in the focal plane of the trap, for three

distinct sets of measurements, taken for consistency, and shown with differing

marker shapes. The solid curve represents the prediction of Equation. (2.5)

calculated with measured beam waists and known focal lengths. Data is

normalized to a maximum of one and centered. The width of the predicted

profile is not fit to data. The non-Gaussian tails in the data are likely the

result of the halo in the trapping beam, as seen in Figure 2.8. . . . . . . . . . 56
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2.12 A schematic depiction of the output optical system to separate and character-

ize the cross-polarized light generated by rotations of a trapped microsphere.

Linearly polarized light enters the chamber and interacts with a trapped mi-

crosphere. Rotations of the microsphere in the horizontal plane couple some

of the linearly polarized light into the orthogonal polarization, which can then

be separated by a polarizing beamsplitter (PBS) . . . . . . . . . . . . . . . . 58

2.13 (left) A schematic depiction of the side-view microscope dedicated to light

scattered at high-angle from a trapped microsphere. A single lens collimates

the scattered light which is collected in a CMOS camera. (right) An example

image captured with this microscope while a microsphere is within the trap.

The circular feature visible is the opening of one of the truncated pyramidal

electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.14 A schematic depiction of the top-view microscope dedicated to light transmit-

ted through a trapped microsphere, as well as the imaging of devices within

the trapping region. (inset) An example image captured with this microscope

while a microsphere is within the trap and a mechanical device is in proximity.

Due to imperfect polarization, some amount of the trapping beam is visible

and indicative of the position of the microsphere. The image is significantly

aberrated by the aspheric trapping lens through which the light must pass. . . 62

2.15 Photograph of the bead dropper, the piezoelectric actuator, and the support-

ing structure. The bead dropper has been been prepared as described in the

text, and a layer of microspheres is visible near the far end. An SEM image

of the same lot of microspheres is included. . . . . . . . . . . . . . . . . . . . 65

2.16 Schematic cross-section of the electrode cube and trapping lenses, highlighting

the bead dropper, bead catcher, and the slots through which they enter the

beam path above and below the optical trap. The components are shown near

to their full extension, and can be retracted by 12mm using the translation

stage shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.17 Amplitude spectral density (ASD) of microsphere motion along the radial

axis x, for various different microsphere heights within the trap. The signal is

uncalibrated. The resonant frequency from a fit of the ASD to Equation (B.4)

is projected onto the horizontal plane below the ASDs. It is clear that as the

height is lowered (warmer colors) the radial resonant frequency is increasing. . 69
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2.18 Block diagram of the feedback loop to stabilize a trapped microsphere’s center

of mass motion. The x and y (radial) degrees of freedom only require damping

and thus derivative feedback, while the z (axial) degree of freedom is stabilized

with proportional, integral, and derivative gain. Both the measured power

and retroreflected phase are used to construct a feedback signal for the axial

degree of freedom, as there is only one actuator to control the trapping beam

power. The H block assures that the two axial feedbacks don’t “see” each

other, by removing the effect of the z-phase feedback signal from the power

feedback error signal. The digital signal processing happens entirely within

the FPGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.19 Amplitude of microsphere response to an applied electric field as a function of

time during discharge. The magnitude of the electric field remains constant

throughout the measurement, while flashes of UV photons induce discrete

changes in the response amplitude. The changes in amplitude are found to

be integer multiples of a unit step, corresponding to the expected response

of the microsphere with a single electron charge. The response amplitude

here has been normalized into units of electrons, so that the discrete behavior

is exceedingly obvious. Additionally, the response amplitude has been fit to

a series of successive step functions, where the step sizes are constrained to

be integer multiples of a single free parameter: the single-electron response.

In this way, it is possible to measure the optical spring constant (along the

direction of the applied field), and determine an empirical calibration of the

microsphere response to external forces. . . . . . . . . . . . . . . . . . . . . . 78

2.20 Amplitude a typical complex-valued, frequency-dependent transfer function,

Hij , of an optically trapped microsphere. The amplitude scale is in units

of [Arb/N], since the applied force is known in physical units, whereas the

x, y, and z variables are in some units arbitrarily (but consistently) scaled

by the FPGA. The rows don’t necessarily have the same vertical extent, as

each response axis can be scaled independently. The on-diagonal components

include a fit to the expected response of a damped harmonic oscillator. . . . . 82
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2.21 Phase of a typical complex-valued, frequency-dependent transfer function,

Hij , of an optically trapped microsphere. The relative phase of the off-

diagonal response has not been ‘unwrapped’ for ease of representation, al-

though an interpolation (discussed in the text) would require this. The on-

diagonal components include a fit to the expected response of a damped

harmonic oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1 Trap region: A drawing of the trap region is shown in the left panel, illustrat-

ing the 2-mm-diameter holes in the Au-coated pyramidal shielding electrodes

through which the ACSB and the trapping beam are brought in and extracted.

The trapping light is represented by the red conical feature. The panel to the

right illustrates a detail of the end of the ACSB and trapped microsphere,

along with the coordinate frame used in the data analysis. A separate arrow

shows the direction of Earth’s gravity. . . . . . . . . . . . . . . . . . . . . . . 89

3.2 Linearity of the force sensor in the x direction, with residuals from perfectly

linear behavior. Data are collected for a 41-Hz drive signal applied with a

shielding electrode. The other two degrees of freedom have comparable linearity. 91

3.3 Force noise micrographs with a charged microsphere, represented with respect

to a stationary ACSB at various relative positions. Practically, changes in

the relative position are produced by displacing the ACSB, yet for ease of

representation, the figure shows the ACSB as stationary. The force vectors

represent the microsphere response at a frequency far from a single-frequency

AC voltage drive applied to the ACSB during these measurements. For the

data in the top (bottom) panel, the horizontal component of the force vector

represents Fx, the force in the x direction (Fy, the force in the y direction),

while the z component of the vector is always the force in the z direction. In

both cases, force vectors measured at five y positions (with a different color

indicating each y position shown in the legend) in a regularly spaced grid

ranging from −40 to 40 µmm are plotted at each (x, z) location. . . . . . . . . 92

3.4 From top to bottom: histograms of the measured force noise in the x, y,

and z directions at different grid locations. Also shown are the fits to nor-

mal distributions. The low noise and high linearity of the apparatus enable

measurements with a dynamic range of over four orders of magnitude. . . . . 93
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3.5 Vector field plots of (Fx, Fz), top, and (Fy, Fz), bottom, in an xz plane of

relative positions. As before, changes in the relative position are produced

by displacing the ACSB, yet for ease of representation, the figure shows the

ACSB as stationary. The black arrows represent the measured force, while

the red arrows represent the best fit from the FEA of the
#–

E field produced by

an ACSB with the same overall bias voltage as in the experiment. A few grid

points are missing, due to data corruption introduced by the data acquisition

instrumentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.6 The RMS of the x and y components of the measured force on the microsphere

in the plane of the ACSB, as a function of separation from the ACSB. The

data are compared to a model described in the text. The bands represents

the standard deviation of the model, using different random implementations

of the patch potentials. The fit of Fx,RMS (Fy,RMS) implies voltage patches of

size ∼0.8 µm (∼0.7 µm), assuming Vpatch = 100 mV [77, 78]. . . . . . . . . . . 97

4.1 Illustration of the measurement technique. A charged microsphere is trapped

by a Gaussian laser beam and held at fixed axial position with active feedback.

A slowly varying electric field is applied, depicted with a black arrow. The

active feedback reduces the optical power, indicated by the intensity of the

trapping beam, such that the sum of the optical and electrostatic levitation

forces opposing gravity is constant. The relation between optical power and

applied field is then extrapolated to zero optical power, allowing a determi-

nation of mass from the implied electrostatic levitation field and the known

charge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 (upper) Normalized optical power versus applied electric field for 100 50-s

integrations with a single, 2.35 µm radius microsphere [76]. The extrapolation

is performed separately for each integration. The mean of all extrapolations

is shown with a dashed black line. The inset shows the distribution of the

100 extrapolated masses. (lower) The same style of measurement for 50 50-

s integrations with a single, 3.76 µm radius microsphere [88], demonstrating

broader applicability of the measurement technique. . . . . . . . . . . . . . . 106
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4.3 Measured microsphere masses in chronological order are shown in the top

panel. Unfilled markers indicate a low-vacuum environment, P = 1.5mbar,

while filled markers indicate high-vacuum environment, P = 10−6−10−5 mbar.

Black markers correspond to measurements with a negatively charged mi-

crosphere, while red markers correspond to measurements with a positively

charged microsphere. Different microspheres are separated by vertical dashed

lines. The mean mass for each microsphere weighted over all experimental

conditions is shown in the bottom panel. The blue data points with cross-

shaped markers indicate the three microspheres imaged by SEM following

their mass measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 SEM images of the three microspheres collected on the silicon beam, at

×2500 magnification. The left inset shows one microsphere at ×35000 mag-

nification, overlaid with the best-fit ellipse, and the right inset shows the

(1.000 ± 0.005) µm diffraction grating [89], also seen at ×35000 magnifica-

tion. The diffraction grating serves as a calibration length scale for the high-

magnification images of individual microspheres. . . . . . . . . . . . . . . . . 109

4.5 (upper) Distributions of microsphere radii measured by SEM for both conduc-

tively coated and uncoated microspheres of the smaller variety are shown in

the top panel. Gaussian fits yield central values of rAu/Pd = (2.35± 0.04) µm

and rNC = (2.37 ± 0.04) µm for the conductively coated and uncoated mi-

crospheres, respectively. Each distribution is generated from approximately

1000 distinct microspheres. Individual radius measurements from analysis of

the microspheres seen in Figure 4.4 are shown in the panel immediately be-

low. (lower) Distributions of microsphere radii uncoated microspheres of the

larger variety, generated from only 127 distinct microspheres. A Gaussian fit

yields a central value of rAu/Pd = (3.76 ± 0.09) µm. Individual microspheres

of this size were not independently imaged, and thus only the population

measurement is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
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5.1 Top: typical amplitude spectrum of P⊥ for a microsphere prepared in a state

of angular momentum pointing along the ẑ direction. The microsphere is spin-

ning with ωms = 100π krad/s, driven by an electric field with E = 27 kV/m.

The prominent line with sidebands are signatures of the microsphere rota-

tion, with the position of the central line at twice the drive frequency. The

sidebands are phase modulation of the rotation frequency, as shown in the

bottom panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Harmonic oscillation frequency, ωϕ, versus driving electric field amplitude,

E, for a microsphere spinning at ωms = 100π krad/s at a pressure of 2 ×
10−6 mbar. The data is fit to Equation (5.6), obtaining (d/I) = (108 ±
2)A s/kgm) and d = 127± 14 e µm. . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 Top three panels: Spectra of the cross-polarized light intensity, P⊥, for a mi-

crosphere precessing about the x̂ axis while spinning at ωms = 100π krad/s).

The modulation of the cross-polarized light occurs predominantly at twice

the precession frequency, denoted by red diamonds. Bottom panel: Ω for

different E. The slope of the fit (red line) provides (d/I) = ω0Ω/E =

(106 ± 2)A s/kgm, which is consistent with the measurement of d/I from

the frequency of small oscillations. . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Time evolution of ωms after the driving electric field is switched off. For ωms ≳

150 krad/s the angular velocity exhibits an exponential decay. For ωms ≲

150 krad/s the dynamics are modified by torque that could be explained by a

∼ 100 ppm degree of ellipticity in the 1 mW trapping beam and the η ∼ 10−2

phase retardation of the microsphere. . . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Damping time τ calculated from Equation (5.16) versus median integration

time ⟨ti⟩, for the four measurements with microsphere No. 1, indexed chrono-

logically. The bands show the 1σ uncertainty propagated from the individual

uncertainties of the values used to calculate τ . . . . . . . . . . . . . . . . . . . 130
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5.6 Exponential decay of microsphere No. 1 angular velocity due to torsional

drag from residual gas after a 110 kHz driving field has been turned off. Data

are shown for the same four measurements detailed in Figure 5.5. Dotted

lines indicated realizations of Equation (5.15) with τ = τj for measurements

j = 0, 1, 2, 3, where τj is the average of the values plotted in Figure 5.5. The

structure in the residuals, with amplitude ∼2%, is likely the result of a slowly

fluctuating optical torque. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.7 Top three panels: Equilibrium phase, ϕeq, versus chamber pressure for several

magnitudes, E, of the driving field with ωms = 100π krad/s. For each value of

E, ϕeq increases until the microsphere loses lock with the field, and the phase

becomes random. For each E, a fit to Equation (5.5) (with the argument

in Equation (5.17)) is shown in red. Pmax is identified by a red diamond.

Bottom panel: The linear relationship between Pmax and E, with additional E

included. The slope of the fit of E vs pmax is 639±64 (kV/m)/mbar. Assuming

the dipole moment measured from the frequency of small oscillations, this

gives k = βrot/P = (4.1 ± 0.6) × 10−25 m3s, which is consistent with k =

βrot/P = 3.4× 10−25 m3s predicted in References [123, 124]. . . . . . . . . . 135

5.8 Equilibrium phase lag between the orientation of the microsphere dipole mo-

ment and a rotating electric field, versus the residual gas pressure determined

by two capacitance manometers. Three distinct measurements are shown

with He, Ar, and SF6 residual gas. As the pressure is increased, the phase

lags according to Equation (5.18), and Pmax is measured from a fit to this

expression. As ϕeq approaches −π/2, the microsphere rotation becomes un-

locked from the driving field (ϕ becomes random) at a pressure slightly below

Pmax, due to librational motion of the microsphere and torque fluctuations

from the increasing pressure of the surrounding gas. . . . . . . . . . . . . . . 136

5.9 The quantity Pmax/d is plotted against the effective mass of the gas m0,eff

for different species spanning the 4 to 150 amu range, for three different

microspheres. With E and ω0 known, the constant κ is extracted by fitting

Equation (5.19) to the data, with a single free parameter, as shown for each

microsphere. A χ2-minimization finds χ2
1,min/NDOF = 1.9/1, χ2

2,min/NDOF =

3.5/1, χ2
3,min/NDOF = 8.5/5. Residuals shown below are plotted with the

same units as the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
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6.1 Parameter space of Yukawa-type, α − λ, modifications to gravity, including

current experimental constraints. Gravitational strength interactions, α ≈ 1,

are indicated with a dashed line. Adapted from References [141, 160], with

significant additions in the submillimeter regime (the region of interest to this

work) from more recent publications [193–199]. . . . . . . . . . . . . . . . . . 159

6.2 Schematic depiction of the torsion balance described by Reference [198]. The

test and source masses are patterned platinum foils adhered to a glass sub-

strate, with the epoxy serving as the low-density component of the modula-

tion. The components are all gold-coated to reduce electrostatic interactions.

A stationary electrostatic shield (not depicted) sits between the source and

test masses to shield anomalous backgrounds. As the source mass rotates at

angular frequency ω, an oscillating gravitational torque, plus any new inter-

actions, causes the test mass assembly to torsionally oscillate at nω and mω

where n and m are the number of full periods in the two distinct density mod-

ulations present. The density modulations depicted have 8-fold and 40-fold

symmetry, while the actual device has 18-fold and 120-fold symmetry. . . . . 161

6.3 Schematic depiction of the microcantilever apparatus described by Refer-

ence [194]. The test mass consists of a solid gold block mounted to the end of a

silicon cantilever, with some loaded resonant frequency ω0. A nanofabricated

chip with a regular 25 µm density modulation serves as the source mass, and

is driven to oscillate n periods of the modulation at a frequency ω such that

ω0 = nω. A stationary electrostatic shield (not depicted) sits between the

source and test masses to shield anomalous backgrounds. The high-density

gold portion is also continuous, allow a current to be driven through it for

electromagnetic calibrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
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7.1 (left) Schematic of the optical trap and shielding electrodes. The electrode in

the foreground is removed to show the inside of the trap. (right) Zoom in on

the region near the trap. A 4.7 µm diameter microsphere is suspended at the

focus of an upward propagating laser beam. The 10 µm thick Au-coated Si

cantilever is positioned at 20 µm to 200 µm separations from the microsphere

and oscillated in the z direction using a nanopositioning stage. (This figure

is nearly identical to Figure 3.1, aside from a redefinition of the coordinate

system. Both figures are included in their respective chapters to maintain

clarity and consistency.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2 Measured response of microsphere #1 versus distance from the cantilever

face as the cantilever is swept in z with a constant bias of 1,2,3,4, and 5 V.

The data points are shown as dots and the best fit model as solid lines.

(inset) Amplitude of the fit component ∝ ∂zEz (top) and the fit component

∝ Ez∂zEz (bottom). Fits to the expected linear and quadratic dependence

on the voltage are also shown (solid lines). . . . . . . . . . . . . . . . . . . . . 171

7.3 An example FEA calculation of the chameleon field. A cross-section in the

yz-plane is shown, so that the cantilever appears edge-on and extends into

and out-of the page. The residual vacuum pressure of ∼10−6 mbar does not

affect the maximum value of the field here, which is instead limited by the

finite size of the vacuum chamber, as the boundary condition enforces a low

value at the vacuum-matter interface . . . . . . . . . . . . . . . . . . . . . . . 173

7.4 Measured response for microspheres #1 (top), #2 (middle), and #3 (bottom)

versus distance from the cantilever face as the cantilever is swept in z with a

nominal bias of 0 V. The best fit electrostatic background-only model (dashed)

and the amplitude of a chameleon force at the 95% CL upper limit for Λ =

10 meV (solid) are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 175
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7.5 Limits on Λ versus 1/β = M/MPl for the chameleon model discussed in the

text. The 95% CL exclusion limits from this search are denoted by the dark

(gray) region. Recent constraints from atom interferometry are shown by the

light (blue) region [172, 210]. The horizontal line indicates Λ = 2.4 meV.

Limits from neutron interferometry [211–213] and from the Eöt-Wash torsion

balance experiment [175, 204, 217] are denoted by the hatched regions. These

limits are shown only in the restricted regions of parameter space considered

in Refs [211] and [175]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.1 (a) Central portion of the experimental setup: a microsphere is trapped in an

optical tweezer. A stationary shield centered about the trapped microsphere,

with the closest surface within a few microns of the microsphere, and the

attractor system is behind it. (b) Scanning electron microscope (SEM) image

of the attractor system. The dark (bright) regions correspond to silicon (gold).

(c) SEM image of the shield, viewed at a 40◦ angle to highlight the three-

dimensional structure, with the vertical wall to the left. . . . . . . . . . . . . 181

8.2 Composite image of two nanofabricated devices in the vicinity of the trap,

together with a trapped microsphere, captured by the side-view microscope.

Device 1 is the attractor system, mounted on the main nanopositioning stage,

and Device 2 is the electrostatic shield, mounted on the auxiliary nanoposi-

tioning stage. The L-shaped cross-section of the shield, which usually houses

the attractor system, is not visible here. In this image, the attractor system

is translated vertically from its nominal position and is out of focus, the latter

reducing the apparent vertical extent. The main frame of the image shows

the scattering of the trapping laser by the microsphere (A), which leads to

saturation of several pixels of the camera. The inset is taken with a notch fil-

ter that has an optical depth of 6 for 1064 nm light (Thorlabs NF1064-44), in

order to demonstrate the shadow of the microsphere (B) blocking the 870 nm

illumination of the shield. The bright and blurry region (C) behind the device

is caused by a reflection of the illumination from the handle of the attractor

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
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8.3 Amplitude spectral density (attractor systemD) of the z component of the

force on a 7.56 µm diameter microsphere. The black (red) curve shows actual

data with the attractor system stationary (scanning along y at 3 Hz with

202 µm peak-to-peak amplitude). The blue bars show a comparison to an

expected microsphere response produced by the potential described by Equa-

tion 8.1 with with α = 1010 and λ = 10 µm. The data displayed here is the

average of 100 distinct 10-s integrations. . . . . . . . . . . . . . . . . . . . . . 185

8.4 An example result of the mesh calculation for the Yukawa-modified gravita-

tional force with α = 1 and λ = 10 µm, in all three orthogonal axes, on a

d = 7.5 µm and sourced from the attractor system described. The expected

force is shown for a few distinct horizontal separations, and a single fixed

vertical separation, included to demonstrate exciting a response in the axial

direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.5 The single harmonic maximum likelihood estimator (MLE) α̂i for λ = 10 µm

as a function of time for the six harmonics used in the analysis. Each harmonic

fi is evaluated separately taking into account its own phase response and noise

level. Here, each estimation of α̂i comes from 5000 seconds of data. The error

bars represent 95% confidence intervals about the MLEs. The panel to the

right shows the MLE for each harmonic, integrating over the entire data set

(note the expanded vertical scale). . . . . . . . . . . . . . . . . . . . . . . . . 188

8.6 Limit curve in the α − λ parameter space. The region above and to the

right of the red and blue lines indicates the parameter space excluded by

this experiment for positive and negative α, respectively, with a 95% confi-

dence level. The gray region shows the parameter space covered by previous

searches [194–196, 198]. The background-free sensitivity for this run, using

the current attractor system-microsphere separation, noise conditions, and in-
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Chapter 1

Optical Tweezers

The interaction between photons and normal matter, composed of protons, neutrons, and

electrons, has proven to be one of the most fruitful areas of science in the last half century,

allowing the investigation of a wide variety of phenomena. Most often, these phenomena are

made made accessible through the use of lasers, taking advantage of the inherent wavelength

control, as well as the coherence of photons from a laser source.

In particular, lasers can be focused to extremely small spot sizes in order to generate

optical fields with high intensity and sharp intensity gradients, as compared to sources of

incoherent and/or broadband photons, amplifying any interactions between the laser photons

and a target material. Of specific interest to this work is the interaction between a focused

laser and particles with an index of refraction larger than that of the surrounding medium.

By virtue of this interaction, particles with high index of refraction are attracted to the

region of space with the highest optical intensity, and can thus be localized and confined.

This is generally referred to as an optical tweezer.

1.1 Ashkin and the First Optical Tweezer

Working at Bell Laboratories in the 1970s, Arthur Ashkin was developing methods with the

ultimate aim to trap atoms using focused optical fields. Along the way, he had to build

an understanding of the forces that a particle would experience in the vicinity of a tightly

focused laser beam, as well as any effects from a surrounding medium. To that end, he was

studying the behavior of micron-sized particles suspended in fluid, as well as aerosolized

fluid droplets suspended in air.

1
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Figure 1.1: A schematic depiction of one of the first experiments performed by A. Ashkin.
(a) A single laser is brought to a focus within a glass cell containing latex microspheres
suspended in water. The forward-scattered light is then viewed downstream in order to
monitor microsphere motion. (b) A dual-beam setup where counter-propagating beams
result in an equilibrium position in which the microsphere can be fully confined in three
dimensions. High-angle scatter is used to monitor the motion of a trapped from a position
orthogonal to the beam axes. In both iterations, it was clear to Ashkin that particles with
an index of refraction higher than the surrounding medium were drawn to the region of
highest intensity along the beam axis (Fair-use educational reproduction from Reference [1]:
freely available, Nobel Award winning research provided by the American Physical Society)
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In the initial experiment [1], Ashkin had latex microspheres of various sizes ranging

from 0.6 µm to 2.7 µm freely suspended in water within a glass cell. A λ = 514 nm laser

was brought to a focus within this glass cell and positioned to impinge upon and interact

with individual microspheres suspended within the cell. The laser light scattered by the

microspheres was then observed with an objective lens. A depiction of the apparatus from

Ashkin’s manuscript is shown in Figure 1.1a.

With sufficient beam power, Ashkin immediately observed that microspheres near the

beam were drawn radially inward toward the optical axis, where the intensity was highest,

as well as being pushed along the direction of propagation by radiation pressure. When two

identical beams were focused and co-aligned with one another, as in Figure 1.1b, he observed

that the microspheres would eventually come to rest at an equilibrium position along the

mutual optical axis, where the radiation pressure from both lasers was balanced.

And thus the first optical tweezer was born. To better understand the mechanism of

this optically-induced confinement, we will appeal to two geometric optics arguments: one

purely qualitative yet closer to reality, and another that allows for a simple quantitative

parameterization.

1.2 Scattering of Light

Generally speaking, the scattering of photons off matter composed of protons, neutrons, and

electrons is governed by Maxwell’s equations [2, 3], which describe a classical field theory

with gauge freedom. Limiting ourselves to the macroscopic formulation which averages over

the behavior of individual atoms, the canonical four equations refined by Heaviside can be

combined into two wave equations [4]. These are given by,(
v2∇2 − ∂2

∂t2

)
#–

E = 0

(
v2∇2 − ∂2

∂t2

)
#–

B = 0, (1.1)

where v = 1/
√
µϵ = c/n is the phase velocity, µ and ϵ are the permeability and permittivity

of the medium, c is the speed of light, and n is the index of refraction. If the spectral

theorem is assumed, the analysis can be restricted to monochromatic fields of the form
#–

E( #–x , t) =
#–

E( #–x )e−iωt with ω the angular frequency of oscillation, which reduces the wave
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equation to the Helmholtz equation for the electric (or magnetic) field,

(
∇2 + k2

) #–

E = 0 and
#–

B =
1

ik
∇× #–

E, (1.2)

where k = ω/v = 2πn/λ is the wave vector, with λ the vacuum wavelength and v as

before. Solutions to this equation can describe arbitrary electromagnetic fields in vacuum

and homogeneous media.1 With these equations in hand, the situation of greatest interest

can be considered: the scattering of monochromatic laser light by spherical dielectrics.

The nature of this scattering depends significantly on the ratio between the laser’s vacuum

wavelength λ and the particle diameter d, and can be understood in three distinct regimes.

For Rayleigh scattering, when λ ≫ d, atomically or molecularly bound electrons are

treated as harmonic oscillators subject to the electric field of incident photons, which cause

the electrons to oscillate about the atomic nucleus. Their motion produces an oscillating

dipole moment which then radiates the scattered electric field [4]. For geometric optics, when

λ≪ d, solutions to Equation (1.2) are developed in the zero-wavelength limit, where material

boundaries defined by discontinuities in ϵ = ϵ( #–x ) or µ = µ( #–x ) yield Fresnel reflection

coefficients (for specular reflections) and the Snell-Descartes Law of Refraction [5]. These

two relations can be used to understand a wide variety of optical systems with various

reflecting mirrors and dielectric elements (lenses, prisms, etc.).

Before diving into the details of Mie Scattering, which describes the all-important regime

where λ ∼ d, we will make use of more approachable geometric optics arguments in order

to understand optical trapping.

1.2.1 An Effective Geometric Optics Picture

Following Ashkin’s original paper, consider a dielectric microsphere in the vicinity of a laser

beam, but offset from the optical axis. Assume incident rays are parallel, but have an

intensity distribution that is maximal along the optical axis, and falls off radially, such

as in the case of a TEM00 mode with a Gaussian intensity distribution. Reflection and

refraction of the incident rays results in radiation pressure and deflection forces on the

dielectric microsphere, since photons carry momentum and
#–

F = d #–p /dt. This scenario is

shown schematically in Figure 1.2.
1Although we will restrict ourselves to homogeneous media for simplicity, the above equations can be

extended to inhomogeneous media simply by redefining the wave vector: k → k( #–x ) = ωn( #–x )/c = 2πn( #–x )/λ,
where the inhomogeneity is parameterized by a spatially varying index of refraction.
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Figure 1.2: A dielectric microsphere in the vicinity of the optical axis of a paraxial laser
beam, where the reflection and refraction of two rays has been indicated. Reflection induces
radiation pressure forces, while refraction induces deflection forces, both due to the change
in photon momentum. The beam has an intensity distribution that is maximal along the
optical axis, and falls off radially, as indicated by the inset axes on the left side, as well as
the relative thicknesses of the two rays. The radial intensity gradient results in an overall
force that tends to push the microsphere toward the optical axis and along the direction of
propagation. (Adapted from Reference [1])
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Two rays are drawn, symmetrically placed above and below the center of the dielectric

microsphere so that the angles of their reflection and refraction are mirrored. Because the

upper ray has a higher intensity, indicated by its thickness, the deflection and radiation

pressure forces induced by its refraction and reflection are larger than same forces produced

by the less intense ray. The lengths of the resultant force vectors are indicative of their

relative strengths, although the diagram is purely qualitative. The total force acting on the

microsphere from these two rays simultaneously pushes the microsphere along the direction

of propagation, and toward the region of highest intensity, as indicated, and can thus be

thought of as a restoring force.

This argument can easily be extended to the entire beam and microsphere, noting that in

the integral over the microsphere there will always be pairs of rays with mirrored deflection

angles, but where one ray is more intense than the other, resulting in an overall force that

draws a dielectric microsphere toward the optical axis of the trapping beam.

1.2.2 A Naïve (but Quantitative) Parameterization

With an even simpler geometric optics picture, it is possible to provide an approximate

parameterization in order to quantify the scale of the optical confinement forces. Consider

a collimated laser beam with total power Popt as a single ray (most of the power will be

near the center for commonly used beams), and treat a dielectric microsphere as a basic thin

lens, assuming a single point of deflection within the bulk of the microsphere. Now, offset

the microsphere from the beam axis by some distance ∆x. Under this simple construction,

the beam will be deflected by an angle ∆θ, as shown schematically in Figure 1.3.

Because photons carry momentum, totaling Popt/c for a beam with optical power Popt,

a deflection implies a change in optical momentum flux and thus an associated force applied

to the photons. By Newton’s third law, there is an equal and opposite force that acts on

the microsphere,
#–

Fms, and provides a restoring force that confines the microsphere along

the optical axis,

#–

Fms = −
d #–p photons

dt
≈ ξ

Popt

c
∆θ (−r̂), (1.3)

where ξ is a “trapping efficiency” factor, given that not all of the photons will interact

with the microsphere since d ̸≫ λ (at least for the experimental parameters of interest),

and r̂ is a unit vector pointing radially outward. Thus, the force in the −r̂ direction is a
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Figure 1.3: A schematic depiction of the simplified momentum conservation argument for
radial confinement. Deflection of the trapping beam results in a change of optical momen-
tum, and thus requires a force since Fms = dp/dt. An equal and opposite force is applied to
the dielectric microsphere by the photons.

restoring/confining force.

Assuming some representative numbers, Popt ≈ 1mW, ξ ≈ 0.3, and ∆θ ≈ 1mrad, the

optical force implied by this parameterization is,

#–

Fms ≈
(
1× 10−15N

)( ξ

0.3

)(
Popt

1mW

)(
∆θ

1mrad

)
(−r̂), (1.4)

which gives a reasonably accurate indication of the scale of forces involved when optically

trapping dielectric microspheres for easily measurable deflection angles and typical beam

powers. It is expected that ξ ∼ dα with α > 0 although the existence of resonances at

various d complicate this picture slightly.

1.2.3 Comment on Axial Confinement

An important feature that has been glossed over significantly is the nature of the axial

confinement (as opposed to radial confinement) induced by the interaction between a fo-

cused laser beam and a dielectric particle. Much like the radial confinement discussed

previously, axial confinement can be understood in terms of a momentum conservation ar-

gument, wherein both reflection of refraction of incident photons induce forces as a result

of the change in photon momentum. Let us consider a paraxial laser beam brought to a



8 CHAPTER 1. OPTICAL TWEEZERS

highly convergent focus by a lens, and examine the interactions of the beam with a dielec-

tric microsphere placed below the focus, making use of geometric optics to gain an effective

understanding. This argument is presented schematically in Figure 1.4, which has been

adapted from the first implementation of fully three-dimensional trapping with a single

beam [6].

The reflection and refraction of two rays symmetrically placed about the optical axis,

and thus assumed to have the same intensity (or nearly so for most laser beam profiles),

produce forces that, overall, tend to push the microsphere toward the focus. The same

argument holds for a microsphere placed above the focus, where the resulting force would be

directed downward, and thus an equilibrium position at, or near to, the focus is expected.

In in their 1986 work [6], Ashkin et al. implemented an optical trap in which the main

trapping beam was propagating downward (in the same direction as gravity), in order to

unquestionably demonstrate that the axial force induced by a single, highly-focused trapping

beam interacting with a dielectric microsphere was sufficient to generate a “full” optical

tweezers exhibiting optically-induced, three-dimensional confinement, even with gravity and

radiation pressure working in tandem against the confining gradient force, rather than in

opposition to one another.

For single-beam optical tweezers with a low numerical aperture (NA), an axial equilib-

rium position does not exist in the absence of external forces. Essentially, with low NA, the

Rayleigh range of the beam’s focus can be much larger than the trapped particle itself, and

thus there is a vanishing axial intensity gradient in the vicinity of the focus. Within the

Rayleigh range, rays can be thought of as propagating parallel to the optical axis, in which

case the deflection and radiation pressure forces induced by the reflection and refraction of

the parallel rays tends to push the microsphere along the beam axis, rather than confine

it to some axial equilibrium position. This was the case for Ashkin’s original experimental

apparatus [1], and is clearly visible in Figure 1.2, which was adapted from that work.

For optical systems where this is the case, other methods must be utilized for fully three-

dimensional trapping. Two of the more common approaches were both developed originally

by Ashkin, together with Dziedzic [1, 7]. As seen in Figure 1.1, it is possible to balance

the on-axis radiation pressure force simply with a secondary, counter-propagating, trapping

beam. Properly aligned, both beams contribute to radial confinement, while the combination

of their opposing radiation pressure forces produces axial confinement. This configuration

has the advantage that the effective optical spring-constant along each direction can be tuned
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Figure 1.4: A dielectric microsphere in the vicinity of the focus of a highly convergent laser
beam, where the reflection and refraction of two rays symmetric about the optical axis has
been indicated. As before, reflection induces radiation pressure forces while refraction in-
duces deflection forces due to the change in photon momentum. The sum of all optically
induced forces shown will push the microsphere toward the focus, while radial confinement
will keep the microsphere along the optical axis. The result is fully three-dimensional, opti-
cally induced confinement in a single-beam gradient force trap. (Adapted from Reference [6])
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by increasing the power of the trapping beams. Asymmetric adjustments to each beam’s

power, and thus radiation pressure, allows for tuning of the equilibrium position along the

mutual optical axis of both beams. This solution also has clear downsides, as it not only

requires the use of two focused laser beams, but also a precise co-alignment of their optical

axes, which is by no means an easy task. It also complicates the required input and output

optical systems that serve to shape and direct the incident and scattered beams.

The on-axis radiation pressure force of a low NA optical tweezer can also be countered

with any other force, such as gravity due to interaction with the Earth. A vertically-oriented,

upward-propagating optical trap does exactly this, using radiation pressure to levitate a

dielectric microsphere against gravity, as Ashkin demonstrated numerous times [1, 8, 9]. In

such a configuration, the axial equilibrium position is determined solely by the optical power.

This can be understood by considering the axial position at which | #–

F rad| = | #–

F grav|, where

Fgrav is assumed constant and Frad depends on the optical intensity at that axial position

(and thus total power), which is maximized near the focus. This will be the approach taken

in this work, and will be discussed again in more detail when appropriate.

1.3 Mie Scattering - The T -Matrix Method

Although the arguments presented in the previous sections are useful to get an intuitive

understanding, accurate quantitative predictions are difficult when λ ∼ d, which is exactly

the relevant regime with a 1064 nm trapping laser and micron-scale dielectric microspheres.

Analytical solutions exist for simple cases, such as homogeneous spherical particles, and

are referred to as generalized Lorenz-Mie scattering theory [10–12], often requiring infinite

summations of slowly converging series. Numerical techniques reign supreme here, allowing

for the development of quantitatively accurate approximate solutions.

Following the construction of the Helmholtz equation (Equation (1.2)), again appealing

to the spectral theorem to write both incident and scattered optical fields as superpositions of

a complete set of basis functions that are themselves solutions to the Helmholtz equation [13],

Einc =
∞∑
n

anψ
(inc)
n and Escat =

∞∑
m

pmψ
(scat)
m , (1.5)

where an and pm are coefficients of the basis functions. The summations are not usually

taken to infinity, rather, they are truncated at some value set by the convergence behavior
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of the coefficients for a particular scenario. Assuming the dielectric microsphere has a linear

response to the incident optical fields, the scattered field is related to the incident field by

a simple matrix equation,

pm =
∞∑
n

Tmnan. (1.6)

This formalism allows the calculation of the shape of the electromagnetic field of a focused

laser beam that has been scattered by a dielectric microsphere confined near the focus. By

analyzing the change in optical momentum between the incident and scattered beams, it is

possible to infer the optical forces that would be applied to a trapped microsphere. Some

details of this calculation are discussed in Appendix A.

1.3.1 Example Result from the Optical Tweezers Toolbox

Although a number of optical tweezer simulations exist, our focus is restricted to a partic-

ularly well-commented code library that has proven to be both useful and quantitatively

accurate: the Optical Tweezers Computational Toolbox [13]. This code library is a robust

implementation of the T -matrix method described in the previous section and Appendix A,

and the developers have numerous publications detailing the methods, as well as the relevant

advantages and drawbacks [13–15].2 The library is made freely available as a collection of

MATLAB functions in which the user can specify arbitrary particle shapes, particle posi-

tions, and input beam modes. By simulating the interaction between the defined beam and

sphere for a range of relative displacements about the focal point, the scattering behavior

of a trapped microsphere can be characterized. Furthermore, by examining the incoming

and outgoing momentum flux of the incident and scattered optical fields, respectively, any

change in optical momentum can be used to infer optical forces applied to the microsphere

for a particular relative displacement.

Importantly, the results from a specific utility function are considered, wherein a user

defines input beam and scatterer parameters as well as the desired positions over which to

perform the computation, and then the toolbox calculates a “trapping efficiency parameter”,

ξ, which can be both positive and negative. This quantity is a measure of the strength and

2These are the three major works directly related to the fundamentals and operation of the Optical
Tweezers Computational Toolbox itself, but there is a plethora background and supplementary material
available in their bibliographies.
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direction of the optical interaction for a particular relative displacement, where the optical

force is given by Fopt = ξP/nmc for some assumed beam power P and index of the medium

nm (in vacuum nm = 1). For example, consider a Cartesian coordinate system and let z

be along the optical axis. If ξz(z) > 0, then the axial (z) optical force points in the +z

direction, and vice versa for ξz(z) < 0. Thus, if ξxi crosses from positive to negative for an

increase in the coordinate xi, then the zero-crossing represents an equilibrium position since

displacements away from this position result in restoring forces. The trapping efficiency is

usually characterized along orthogonal axes passing through the focal point, which is often

near to the equilibrium.

In the work detailed in later chapters, a laser with vacuum wavelength λ = 1064 nm is

used in order to trap amorphous silica microspheres primarily with diameter d ≈ 4.7 µm, us-

ing an optical tweezer in vacuum with low numerical aperture. However, for reasons that will

become apparent shortly, these parameters are not ideal for generating sufficiently “generic”

optical potentials. Instead, for the following example calculations, a silica microsphere with

diameter d ≈ 1.6 µm and index of refraction n ≈ 1.33 is used, which is less than that of

fused silica,3 confined to an optical trap generated by a linearly polarized, paraxial TEM00

mode focused with a numerical aperture of NA = 0.9.

With these parameters, the axial trapping efficiency is computed and shown in Figure 1.5,

as well as the radial trapping efficiency shown in Figure 1.6 for the Cartesian axis aligned

with the incident beam polarization (the orthogonal radial axis yields identical results). The

trapping efficiency curves in both figures include a secondary axis in force units, assuming

P = 1mW and nm = 1. The axial trapping efficiency has a clear asymmetry associated to

the direction of propagation, although there is a stable equilibrium position just past the

focus, as well as an unstable equilibrium slightly farther along the beam, in the direction of

propagation +z.

If it is assumed that this optical interaction is conservative, the force can be integrated

as a function of position to compute an associated potential energy U , since Fxi = −dU/dxi.
This is shown in the lower panels of both Figures 1.5 and 1.6, with a secondary axis in units

of kBT , where kB = 1.38 × 10−23 kgm2/s2K is the Boltzmann constant. This allows for a

naïve comparison to the expected thermal energy of a trapped particle at temperature T .

3Silica microspheres grown with the Stöber process often have porous internal structures [16–19]. This
results in a lower mass density and thus a lower number density of electrons. Assuming the classical electron
oscillator model for the polarizable of the material: (n2 − 1) ∼ ξ ∝ ne, with ξ the dielectric susceptibility
and ne the electron number density.
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Figure 1.5: (upper) Axial trapping efficiency for a microsphere (radius rms ≈ 0.8 µm, index of
refraction nms = 1.33) within an optical trap generated by a λ = 1064 nm beam in vacuum,
focused with a numerical aperture NA = 0.9 and propagating in the +z direction. The
resultant optical force, shown by the secondary axis, corresponds to a total beam power of
P = 1mW. (lower) Associated potential energy, assuming the optical force is conservative,
plotted with a harmonic approximation generated from the slope of the trapping efficiency
curve at the axial equilibrium position. A secondary axis shows the scale of the force in
units of thermal energy at temperature T = 300K. Two dashed lines help guide the eye to
see the effective trap depth in units of kBT . Data in both panels is expected to scale linearly
with the optical power P, so that the trap depth and spring constants can be tuned.
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Figure 1.6: (upper) Radial trapping efficiency for a microsphere (radius rms ≈ 0.8 µm, index
of refraction nms = 1.33) within an optical trap generated by a λ = 1064 nm beam in
vacuum, focused with a numerical aperture NA = 0.9 and propagating in the +z direction.
The resultant optical force, shown by the secondary axis, corresponds to a total beam power
of P = 1mW. (lower) Associated potential energy, assuming the optical force is conservative,
plotted with a harmonic approximation generated from the slope of the trapping efficiency
curve at the radial equilibrium position, r = 0. A secondary axis shows the scale of the force
in units of thermal energy at temperature T = 300K. Data in both panels is expected to
scale linearly with the optical power P, so that the trap depth and spring constants can be
tuned.
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Given the asymmetry of the axial potential energy, two dashed horizontal lines indicate the

local energy minimum associated with the equilibrium position, as well as the nearby local

maximum, so that the trap depth can be inferred.

Further assuming motions of the microsphere will be “small” about the equilibrium, the

force can be approximated as scaling linearly with displacement, suggesting a parameteri-

zation of this interaction with a Hooke’s Law relation:

Fopt,xi = −ki xi = −(mmsω
2
i )xi, (1.7)

where ki is an “optical spring constant” for motions along the xi axis, and ωi is the natural

frequency of oscillation for a trapped microsphere along this axis, which is now being de-

scribed as a simple harmonic oscillator. A harmonic approximation for both axial and radial

curves is plotted together with the data, where the spring constants are calculated from the

slope of the trapping efficiency and force curves at their equilibrium positions.

1.4 Optical Tweezers as Force Sensors

At this juncture, there is a clear application of optically trapped particles as force sensing

elements. Consider a dielectric microsphere confined to the equilibrium position of an optical

trap. Making the assumption of quasi-static equilibrium, an external force applied to the

trapped microsphere would produce a displacement, such that the optical restoring force

balances the applied force. Force sensing then becomes an exercise in displacement sensing.

In this collection of work, we aim to use an optically-levitated microsphere as a force sensor,

with an emphasis on short-distance force detection of interactions that couple to mass. Under

this paradigm, mechanical access to the trapping region, without significantly perturbing

the optical fields, is of paramount importance in order to excite possible interactions of

interest without generating background forces or producing anomalous scattering of light.

This places some constraints on possible imaging schemes.

Displacement of an optically trapped microsphere can be observed in a number of ways.

A common practice is the use of auxiliary imaging beams, wherein motion of the microsphere

scatters light from an imaging beam(s), which is then used to infer the microsphere’s motion.

However, the use of auxiliary imaging beams has some fundamental drawbacks, most notably

that the beams themselves perturb the optical trap and necessarily apply forces to the
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trapped particle. Additionally, any imaging beam that is not coaxial with the trapping

beam limits mechanical access, since any source mass introduced to excite an interaction

must also not block/interfere with either the imaging or trapping beams.

Instead, a more direct approach will be used, where the displacement of the trapped

microsphere, and thus the applied force, will be inferred by measuring by the scattering of

the trapping beam itself. For example, as was argued from a geometric optics perspective

before, a radial displacement (read: externally applied radial force) will deflect the light

transmitted through the trapped microsphere. If the beam transmitted through the trapped

microsphere is collimated, then this deflection will be converted to a displacement of the

collimated beam, which can easily be measured with segmented photodetectors. This simple

conceptualization is shown schematically in Figure 1.7, where a paraxial beam has been

treated as a single ray, and a force applied to a trapped particle induces a deflection of the

transmitted light and thus a displacement of the collimated light.

The situation is slightly more complicated for forces applied in the axial direction, al-

though there are a few commonly used methods. As a dielectric microsphere moves axially,

it changes the divergence of transmitted light. If an aperture is then positioned downstream,

the amount of light transmitted through the aperture depends on the divergence of the out-

going beam, and thus depends on the axial position of the trapped microsphere. One can

similarly consider the light retroreflected by the trapped microsphere. Not only does the

divergence of the retroreflected light change depending on the axial position of the micro-

sphere, but the phase of the retroreflected light also changes. It is this latter property that

will be exploited to measure the axial position in this work.

1.5 Vertically Oriented Optical Tweezers

A clear requirement of any apparatus aiming to probe forces and interactions that couple to

mass at short-distance, is that sources of the interaction to be probed need to be brought in

proximity to a trapped microsphere. This must be done without significantly perturbing the

trapping beam, which can simultaneously affect the behavior of a trapped microsphere, as

well as produce anomalous scattering of light that could contaminate attempted measure-

ments. The difficulty is compounded if the trapping beam is highly convergent, where any

mechanical device intended to be in proximity to a microsphere (assumed to be trapped at

or near to the focus) must be narrow along the dimension parallel to the optical axis, given
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Figure 1.7: A vertically oriented optical trap, with a force applied to a microsphere confined
within the trap. The resulting deflection of the trapping beam, ∆θ is recollimated by a lens
of focal length d to a displacement ∆x, which can be measured to infer the applied force.
Here it is assumed the optical power has been tuned to levitate the microsphere near to
focus.
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that the lateral extent of the trapping beam increases rapidly as you move away from the

focus. Generally speaking, a highly convergent trap also limits the amount of space that can

be dedicated to electrostatic shielding, since lenses with high NA usually have short working

distances.

The most naïve solution to make this problem tractable is the use of a trapping beam

with a low NA, so that there is an ample working distance between the physical surface of any

lenses and the trapped particle, as well as a long Rayleigh range about the focus.4 The long

working distance allows for effective electrostatic shielding of the trapping region, and more

importantly, when combined with the long Rayleigh range, there is sufficient space in which

to bring mechanical objects close to a trapped microsphere. One might immediately recall,

however, that with a single beam that has low NA, there is no optically-induced equilibrium

point in the axial direction for a dielectric microsphere. The interaction between such a

beam and a microsphere tends to confine the microsphere radially to the optical axis, whilst

exerting a radiation pressure force along the direction of propagation, as shown schematically

in Figure 1.2.

Appealing to one of Ashkin’s initial solutions, a fully three-dimensional trap can be

constructed with a low NA trapping beam by orienting the beam such that it propagates

vertically upward, so that the axial radiation pressure force opposes gravity, and an axial

equilibrium position exists. As the trapping beam is focused to a spot, the intensity, and by

extension the radiation pressure force, is maximized at the focus. Thus, the axial position

at which gravity is equal in magnitude to the radiation pressure force can be controlled

by tuning the optical power. One might then expect that the optical power required for

levitation is minimized at or near to the focus, where the lateral extent of the beam is

minimized and the closest mechanical approach is possible.

1.5.1 Levitation via Radiation Pressure

The power required to levitate a microsphere against the force of Earth’s gravity with

a vertically-oriented, low NA trapping beam can be calculated with the Optical Tweezers

Computational Toolbox, but it is pedagogical to first consider order of magnitude arguments.

As before, optical forces associated to the interaction between a focused laser beam and a

dielectric microsphere, such as those required to levitate a microsphere against gravity, are

4Beams with a low NA can also be more readily approximated as paraxial Gaussian beams, so that the
concept of “Rayleigh range” is appropriate in this context.
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induced by changes in photon momentum from their scattering. In a laser beam with total

optical power Popt, there is a momentum flux of Popt/c [4, 5, 20]. In the limit of plane wave

illumination, perfect reflection, and a planar reflector, the change in momentum flux from a

reflection of this beam induces an axial force equal to 2Popt/c, which is a strict upper limit

on the levitation force a beam with power Popt can exert.

In most realistic situations, the majority of the trapping beam is transmitted through

a trapped microsphere, as the microsphere is neither planar, nor does a vacuum-to-silica

material boundary reflect significantly at typical operating wavelengths in the visible and

near-infrared. Thus, the levitation force is usually parameterized as Fopt = ξzPopt/c where

ξ ∼ 0.1 is a reasonable order of magnitude for relevant microsphere and beam parameters.

Additionally, the complexities of Mie Scattering contribute higher-order effects, such that

this efficiency ξz is not monotonic as a function of microsphere radius, microsphere index

of refraction, or beam NA, to name a few parameters. These effects can be understood by

using the Optical Tweezers Computational Toolbox.

Consider a silica microsphere with radius rms = 2.35 µm, mass mms = 84pg, and index

of refraction nms = 1.33 at λ = 1064 nm, which are realistic values for a particular batch of

microspheres that were used in nearly all of the results presented in later chapters.5 Using

the Optical Tweezers Computational Toolbox and assuming an optical trap in vacuum,

with wavelength λ = 1064 nm and focused with a numerical aperture NA = 0.12, the

axial trapping efficiency ξz can be calculated as a function of microsphere position within

the beam, allowing an inference of the required beam power to levitate the sphere against

gravity by setting Fgrav = Fopt. This yields,

Popt =
mms g c

ξz
. (1.8)

The result of this calculation, for the given microsphere and beam parameters, is shown

in Figure 1.8. There is a minimum in required levitation power of ∼1.0mW just below the

focus, where the asymmetry is similar to the result in Figure 1.5. One can immediately see

that there is no optically-induced equilibrium position: the axial trapping efficiency ξz is

positive definite. This is synonymous with the statement that for a microsphere anywhere

along the optical axis, the force always points along the direction of propagation, at least

for these particular parameters. In this case, an external force must be applied to stabilize

5The empirical determination of these values is detailed in Chapter 4.
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Figure 1.8: (upper) Axial trapping efficiency for a microsphere (radius rms = 2.35 µm, index
of refraction nms = 1.33) within an optical trap generated by a λ = 1064 nm beam in vacuum,
focused with a numerical aperture NA = 0.12 and propagating in the +z direction. (lower)
Required optical power to levitate the same microsphere, assuming a mass mms = 84pg,
and with g = 9.81 kgm/s2 (See Chapter 4).
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the trap axially, which can be done with Earth’s gravity.

1.5.2 Radial Equilibrium

In the radial direction, the expected radial trapping efficiency can be be computed just

as before, but now with parameters relevant to the work at hand. Since the apparatus is

intended to operate with a radially symmetric beam, it suffices to consider the trapping

behavior along a single Cartesian axis, although that need not be the case in general. With

the microsphere parameters rms = 2.35 µm, mms = 84pg, and nms = 1.33), and input beam

configuration λ = 1064 nm, and NA = 0.12, the radial trapping efficiency is shown in the

upper panel of Figure 1.9, with a second y-axis scaled by Popt(z = 0)/c to demonstrate

the expected radial confinement force with the microsphere positioned at the focus of the

trapping beam.

As before, the associated potential energy from integrating the force as a function of

position is plotted in the lower panel of Figure 1.9, with a secondary axis in units of kBT

with T = 300K. A trap depth of O(100kBT ) suggests that, at room temperature residual

gas collisions are unlikely to eject a microsphere of the given dimensions from an optical

trap with the given configuration.

The harmonic approximation clearly breaks down for large microsphere displacements

of order ∆r ∼ 0.5rms, but is otherwise extremely useful in understanding the dynamics of

an optically trapped microsphere. Certainly, in searches for new interactions involving the

detection of extremely small forces, only the linear response need be considered. Further de-

tails and derivations of the harmonic oscillator response to applied forces, including damping

and thermal forces from collisions with residual gas, can be found in Appendix B.

Making use of the results in that appendix, the power spectral density of the displacement

of a thermally driven, optically trapped microsphere can be calculated. It is usually assumed

(and occasionally demonstrated [21, 22]) that the force applied to a trapped microsphere

by the momentum transfer of colliding gas particles exhibits a frequency-independent power

spectral density [23]. If this thermal drive is applied to the equations of motion for a damped

harmonic oscillator, the resulting motion along a single axis (x, for example) has a power

spectral density, in units of m2/Hz, of the form,

Sxx(ω) =
2kBT

mms

γx
[(ω2

x − ω2)2 + ω2γ2x]
, (1.9)
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Figure 1.9: (upper) Radial trapping efficiency for a microsphere (radius rms = 2.35 µm,
index of refraction nms = 1.33) within an optical trap generated by a λ = 1064 nm beam in
vacuum, focused with a numerical aperture NA = 0.12 and propagating in the +z direction.
A secondary y-axis has been scaled by Popt/c, assuming an optical power of Popt = 1.1mW
calculated at z = 0 µm (i.e. the focus, and based on the result shown in Figure 1.8) to
demonstrate the expected optical confinement force vs radial position relative to the focus.
(lower) Associated potential energy, assuming the optical force is conservative, plotted with
the harmonic approximation generated from the slope of the trapping efficiency curve at
z = 0.
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written as a function of angular frequency ω, where T is the temperature of the residual gas

(assumed to be in equilibrium with the trapped particle), γx is the damping coefficient in

the x direction (see Appendix B for conventions, such as the definition/normalization of γ,

given that a number of different conventions exist), and kB, mms and ωx are as before.

By surrounding a trapped microsphere with a non-negligible and known pressure of

residual gas, it is possible to measure just such a response spectrum, allowing an empirical

determination of the resonant frequency, the damping, as well as the scale of the fluctuations,

the latter of which can be used to infer the ratio of the microsphere mass to the temperature.

This will discussed again in Chapters 2, 4, and 5.

1.6 Imaging of Microsphere Motion: A Heterodyne Approach

Since the displacement can be used to infer the applied force, given the analysis in the pre-

vious sections, we now consider how one might detect and measure these displacements. As

was mentioned, the design of the experimental apparatus is meant to minimize the interac-

tion between optical fields and any mechanical devices brought in proximity to a trapped

microsphere. One way in which this is accomplished is by avoiding the use of auxiliary

imaging beams. Then, in order to measure the displacement of a trapped microsphere, the

scattering of the trapping beam itself must be considered.

This task can be partitioned into two sub-tasks: measurement of the transmitted/forward-

scattered light, and measurement of the retroreflected light. It is expected that, given the

complexities of Mie scattering, motion along any direction will induce a change in both the

transmitted light and the reflected light, necessitating development imaging techniques that

have some degree of orthogonality a priori.

Orthogonality can be achieved to a certain degree by employing interferometric imaging

techniques, where the the light transmitted through and retroreflected by a trapped micro-

sphere is superposed with stationary reference beams. In the axial direction, the phase of

retroreflected light is modulated by axial motions of the microsphere, which immediately

suggests a phase-sensitive imaging technique may be appropriate. In the radial directions,

the transmitted trapping beam is deflected by radial motions (collimated to displacements),

which in turns changes the spatial distribution of the transmitted light. By interfering the

transmitted light with a stationary reference beam, an amplitude-sensitive interference tech-

nique is appropriate. For small displacements about an equilibrium position, axial motions
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should not deflect the transmitted light in either radial direction, and radial motions should

not alter the phase of the retroreflected light.

1.6.1 Reflected Light Interferometry

First, let us consider motion along the axial direction. Some amount of the trapping light

is retroreflected by the microsphere, primarily by the bottom surface, in addition to other

high-angle scatter. As a trapped microsphere moves up and down within the optical trap

(i.e. along the optical axis), the path length of the retroreflected light changes, which is

necessarily encoded in the phase of the retroreflected light.

Consider a planar reflector being translated axially by some distance δz. One might

expect a phase change δϕ of the light retroreflected by this planar device to be given by,

δϕ = 2π

(
2 δz

λ

)
, (1.10)

with λ being the wavelength of the trapping light. The factor of 2 in the numerator is due to

the reflection, as any motion δz induces twice that value in the change of the optical path-

length. In practice, this relation does not appear to hold exactly for retroreflected light from

microspheres. Instead, an empirical calibration of every degree of freedom is performed, as

discussed in Chapter 2, although it is pedagogical to consider an ideal case.

Let I(t) be the intensity of the superposition projected onto a photodiode. The intensity

is necessarily a function of the radial coordinates x and y, but these arguments are suppressed

given that the photodiode performs a spatial integral over the intensity impinging on its

active surface. This results in a geometric factor that sets the overall amplitude of the

interference, but has little effect on the phase. Proceeding heuristically, let’s consider each

beam (i.e. the retroreflected light and a reference beam) in the superposition as being

perfectly collimated and aligned, such that they have flat wavefronts at the surface of the

photodiode. Then,

I(t) ∝ |Etot(t)|2 = |Etrap,r(t) + Eref(t)|2

= |Etrap,re
i(ωtt+ϕt+δϕ) + Erefe

i(ωrt+ϕr)|2,
(1.11)

where Etrap,r and Eref (both functions of the beam radial coordinates) are the electric fields

of the reflected trapping beam and the reference beam at the surface of the photodiode,
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respectively, ωt = ωopt + ω1 and ωr = ωopt + ω2 are the frequencies of the trapping and

reference beams including frequency shifts ω1 = 2π(150MHz) and ω2 = 2π(149.375MHz)

introduced by acousto-optic modulators, ϕt and ϕr are fixed, but arbitrary, phases of the

trapping and reference beams (the “arms” of the interferometer do not have their lengths

controlled), and δϕ is the phase shift induced by motion of the microsphere. Ignoring the

constant terms, the intensity of the interference is

IIF(t) ∝ Etrap,rEref Re
[
ei(∆ωt+∆ϕ+δϕ) + e−i(∆ωt+∆ϕ+δϕ)

]
∝ 2Etrap,rEref cos(∆ω t+∆ϕ+ δϕ),

(1.12)

where ∆ω = 625 kHz is the heterodyne interference frequency, and ∆ϕ is a fixed phase

difference between the interfering optical fields. The photodiode performs a spatial integral

over the Etrap,rEref term, the resulting magnitude of which depends on how well the spatial

modes of the two beams coincide, and converts the oscillating optical power,
∫
dA IIF, to

an oscillating photocurrent, iphoto(t) ∼ iphoto,0 cos [∆ωt+∆ϕ+ δϕ(z)]. If the phase δϕ of

this oscillating photocurrent can be measured, then the microsphere axial position can be

inferred. The DC terms dropped when writing Equation 1.12 are also present on the pho-

todiode, so that overall, there is never a negative intensity on the photodiode. Indeed, with

perfect mode matching of two ideal and symmetric Gaussian beams, the interfering intensity

modulates between zero and four times the individual beam intensity (see Appendix C).

As will be discussed in Chapter 2 and Appendix D, the oscillating photocurrent generated

by interference of the retroreflected light is first amplified to a voltage, and then digitally

demodulated with a phase-locked ADC in order to recover the phase of the oscillating

photocurrent (∆ϕ+δϕ(z)), where ∆ϕ is assumed to be relatively constant, but can fluctuate

if the path length of either the reference beam or the retroreflected light fluctuates. An

empirical calibration then allows δϕ to be related directly to an applied axial force on a

trapped microsphere. For this phase measurement of the retroreflected light, the amplitude

of the interference photocurrent is not a critical quantity: it must be large enough that the

phase can be determined with some degree of robustness, which may depend on broadband

electrical noise, as well as potential amplitude fluctuations of the signal oscillating at ∆ω.
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1.6.2 Transmitted Light Interferometry

Much of the trapping beam light is transmitted through a trapped microsphere, rather than

reflected. As the microsphere moves radially within the optical trap, it deflects some of

the transmitted light, which, as the reader may recall, is the source of the restoring force

which keeps the microsphere confined. A converging lens above the trap converts these

beam deflections into displacements, and the displaced beam is made to interfere with a

stationary reference beam. If the transmitted trapping beam and the reference beam are

perfectly aligned to the center of a position-sensitive photodetector (for example, a quadrant

photodiode), then one naïvely expects the interference photocurrent to be centered and

equally distributed. As the transmitted beam is displaced relative to the reference beam

by radial motions of the microsphere, the distribution of interfering optical fields, and thus

interference photocurrent, is also displaced, which can then be measured.

Naively, a highly-pixelated detector such as a camera would be ideal for this purpose,

as the user would then be able to observe any changes in the interference pattern, which

one might expect contains more information, in addition to the expected deflection of the

centroid of the interference. However, nearly all commercially available cameras are not

well-suited to operate continuously at ∼500 kHz near the interference frequency. Continuous

operation is required, as microspheres have been found to require active feedback under high

vacuum conditions in order to remain in the trap for long periods of time [19, 24–29]. Thus,

we must appeal to higher-bandwidth solutions such as quadrant photodiodes.

To simplify the problem, consider an infinite photodetector, segmented into two halves.

Let #–x = {x, y} be a Cartesian coordinate system for positions on the photodetector, with

the two segments corresponding to x < 0 and x > 0. Assume two superposed beams, the

transmitted light that has been perturbed by the microsphere and a second reference beam,

with ideal Gaussian intensity distributions and perfect alignment such that any impinging

optical fields have a flat wavefront at the surface of the photodetector. At its focus, a TEM00

Gaussian beam has the form,

#–

E( #–x , t) = E( #–x ) cos [Φ(t)] = Re
(
E( #–x )eiΦ(t) p̂

)
with E( #–x ) = e

−| #–x |2

w2 and Φ(t) = ωt+ ϕ,

(1.13)

where E( #–x ) is the spatial mode of electric field with peak value E and beam waist w

(the radius at which the intensity has dropped by 1/e2); Φ(t) is the temporal phase, with
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ω = 2πc/nλ the optical frequency, c the speed of light, n the index of refraction, λ the

vacuum wavelength, and ϕ an arbitrary constant phase (included for generality); and p̂ is

the polarization of the beam, assumed orthogonal to the direction of propagation.

For brevity, define numeric subscripts 1 = trap and 2 = ref for the transmitted trapping

beam and reference beam, respectively. As before, the intensity of the superposition can be

computed as the square of the total electric field,

I( #–x , t) =
1

2η

∣∣∣ #–

E1(
#–x , t) +

#–

E2(
#–x , t)

∣∣∣2
=

1

2η

{
E2

1 exp

(
−2| #–x |2

w2
1

)
+ E2

2 exp

(
−2| #–x |2

w2
2

)
+ 2E1E2 exp

(
−| #–x |2

w2
1

− | #–x |2

w2
2

)
cos [(ω1 − ω2)t+ (ϕ1 − ϕ2)]

}
,

(1.14)

where η = 1/cϵ is the wave impedance, c is the speed of light, and ϵ is the dielectric

constant. The factor of (1/2) in the first line comes from an implicit time average over

the terms oscillating at ∼2ωopt (see Appendix C). Now, let’s apply an offset δx in the x

direction for the trapping beam, which is assumed to be the result of microsphere motion,

and compute the spatial integral over one of the two segments of the photodetector, x < 0.

Ignoring terms at DC, the total power of the interference on one half of our detector is

PIF(t |x < 0) =

∫ 0

−∞
dx

∫ ∞

−∞
dy IIF(

#–x , t)

=
E1E2

η
cos (∆ω t+∆ϕ)

∫ 0

−∞
dx

∫ ∞

−∞
dy exp

(
−| #–x + δx x̂|2

w2
1

− | #–x |2

w2
2

)
=
E1E2

η
cos (∆ω t+∆ϕ)

{
πw2

1w
2
2

2(w2
1 + w2

2)
e
− δx2

(w2
1+w2

2)

[
1 + Erf

(
δx

w2
1

√
w2
1w

2
2

w2
1 + w2

2

)]}

≈ πw2
1w

2
2E1E2

2η(w2
1 + w2

2)
cos (∆ω t+∆ϕ)

(
1 +

2 δx√
πw1

√
w2
2

w2
1 + w2

2

)
,

(1.15)

where we’ve assumed δx is small compared to the beam diameters, and thus expanded the

exponential and the error functions, retaining only terms linear in δx. Since the segmented

photodetector consists of two half-infinite planes, an increase in PIF on one segment is

mirrored by a decrease in the other, naively assuming that the total PIF is approximately

constant for small δx. This implies that δPIF(t, δx |x < 0) ≈ −δPIF(t, δx |x > 0). Then,
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the difference in interfering optical power between the two halves can be calculated as,

δPIF(t)

δx
=

2
√
πw1w

3
2E1E2

η(w2
1 + w2

2)
3/2

cos (∆ω t+∆ϕ) . (1.16)

It’s not particularly convenient to express this in terms of the peak electric fields E1 and

E2. The time-averaged power of an ideal Gaussian beam can be related to the electric field

as P = πw2E2/4η (see Appendix C). Substituting this expression into Equation (1.16) for

each beam,

δPIF(t)

δx
=

8w2
2

(w2
1 + w2

2)
3/2

√
P1P2

π
cos (∆ω t+∆ϕ) . (1.17)

And thus, we’ve derived a relation between the difference in interfering optical power

δPIF between two halves of a segmented photodetector as a function of the incident beam’s

lateral displacement and some assumed beam shape and beam power parameters. The

beam displacement δx is related to the beam deflection δθ, which is in turn related to the

microsphere displacement δxms and thus the optical force holding the microsphere in quasi-

equilibrium against an externally applied force. Assuming the trapped microsphere behaves

as a harmonic oscillator, this can be summed up as,

δPIF(t)

δxms
=
δFopt

δxms
· δθ

δFopt
· δx
δθ

· δPIF(t)

δx

= (−kopt,x) ·
(
ξP1

c

)
·
(
1

d

)
· δPIF(t)

δx

=
−8ξP1kopt,xw

2
2

cd(w2
1 + w2

2)
3/2

√
P1P2

π
cos (∆ω t+∆ϕ) ,

(1.18)

where d is the focal length of the recollimating lens, and kopt,x is the optical spring constant

in the x direction. This relation implies that if the interfering optical power is measured,

then the amplitude of the difference in interfering power between two segments is directly

related to the microsphere displacement.

As will be discussed in Chapter 2 and Appendix D, the segmented photodetector used is

a quadrant photodiode (QPD), where the incident interfering optical power is converted to

a photocurrent and amplified to a voltage independently for each quadrant. The oscillating

voltages from the quadrants are each digitally demodulated with a phase-locked ADC in

order to recover their amplitudes, and lateral displacements of the microsphere can then be
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inferred by differences in the amplitude of the demodulated interference across the QPD.

By construction, the amplitude and phase are relatively independent, and thus phase fluc-

tuations from changes in optical path length should not alter the demodulated amplitude,

assuming the fluctuations are slower than the demodulation sampling frequency.

Although the math detailed here is useful to understand the fundamentals of the inter-

ference, the spatial modes of the transmitted trapping beam and reference beams are not

perfectly Gaussian (especially the transmitted trapping beam which has been perturbed by

the microsphere), the curvature of the two beams is not perfectly matched, and our actual

detector is not infinite in extent. Thus, as before, an empirical calibration will be used to

relate δx and δy, the horizontal displacements of the microsphere, to any applied forces.

1.7 Active Feedback Primer

The dynamics of particles confined to optical traps are necessarily dominated by the optical

interactions themselves, and throughout this chapter we’ve made the implicit assumption

that any laser beams involved are stationary apart from scattering induced by the trapped

particles. Any fluctuations of the beam pointing, beam power, or even lasing frequency, some

which are fundamental to the laser system itself, can apply non-negligible forces to a trapped

microsphere. There are also pedestrian sources of fluctuations such as air currents around

the free-space optics, impacts (both of tool and body) from users working on the optical

trap, as well seismic vibrations from general human activity in and around the building,

with an earthquake sprinkled in here and there.

Generally these anomalous fluctuations (i.e. not thermal in nature) are impulse-like,

and would immediately eject a microsphere from the trap if sufficiently strong. However, it

is also possible that both thermal and anomalous fluctuations drive a microsphere in non-

conservative orbits [30, 31], accumulating energy in the center of mass degrees of freedom

and eventually allowing the microsphere to escape the optical potential well. Due to the

destabilizing nature of these fluctuations, optical traps often make use of active feedback

to control the position of the microsphere. Often, the active feedback will only be viscous

in nature, to dampen both thermal and anomalous fluctuations. By comparing real-time

estimates of the microsphere position and velocity to some desired setpoints, where the real-

time signals are derived from imaging techniques such as those described above, forces can

be applied to stabilize the microsphere motion about the setpoints. Given that linear control
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theory is well-established, the only difficulty that arises here is in the implementation of the

feedback actuator itself.

A variety of feedback architectures have been implemented by others in the field, but

generally involve one of two mechanisms: either an optical interaction between a trapped

particle and a modulated/deflected laser beam, or an electrostatic interaction with a non-

zero charge on the trapped particle. For the former, one can manipulate the optical power

and beam pointing of the trapping beam itself [26, 32–34] in order to modulate the optical

spring constant(s) or change the equilibrium position(s). It is also possible to use auxiliary

cooling beams where the power of the cooling beams is modulated to apply optical forces [21].

In the case of electrostatic feedback, a charged and trapped particle is subjected to electric

fields from nearby electrodes, which exert forces on the particle. The latter technique has

been used in recent times to cool the center-of-mass motion of levitated nanoparticles [35],

in some cases reaching the motional quantum ground state [36].

In the apparatus described by Chapter 2, we will take the approach of manipulating

the trapping beam in order to produce feedback forces. Angular deflections of the trapping

beam prior to being injected into the chamber generate radial displacements in the focal

plane of the trap, so the that microsphere is pushed to the displaced equilibrium position.

For the axial degree of freedom, power modulations of the beam adjust the equilibrium

position through the levitation constraint Fopt = Fgrav, operating under the assumption

that Fopt ∝ Popt. In this way, measurements of the microsphere displacements described

in the previous sections can be used to inform an linear control algorithm, which in turn

generates the required feedback forces. This will be discussed in more detail in Section 2.7.



Chapter 2

The Optical Levitation

Apparatus at Stanford

Since approximately 2013 through 2021, there have been four major iterations of the ex-

perimental apparatus at Stanford. The first was constructed and dismantled prior to the

beginning of this PhD, while the second was relatively short-lived and produced only a single

result [25]. Both will thus be mentioned primarily in relation to improvements made in the

third iteration. Skipping ahead, the fourth and most recent iteration (at the time of writing)

has been described in great detail in Reference [37], and has produced the first measurement

of non-Newtonian gravity with optically levitated microspheres.

Almost the entirety of the work presented throughout this thesis was performed on the

third iteration of the apparatus, which has been partially described in Refs. [19, 26–28, 38].

For the sake of completeness, this chapter will provide all of the pertinent details, and will

be referred to heavily throughout the remainder of this work. It should be noted that unlike

many of the other chapters, this one will contain a significant amount of heuristic logic

and empirical evidence for the “proper” operation of the apparatus. Much of the material

is original and has been written solely for this thesis, although some specific sections may

be adapted (or simply copied) from Reference [26], for which the author was a primary

contributor.

The optical trap itself is housed within a vacuum chamber that constitutes the centerpiece

of the experiment. The light that creates the trap originates in a fiber-optic laser system,

and is subsequently directed and controlled with a collection of free-space optics, deemed the

input optics, before being projected into the vacuum chamber. Photons that are transmitted

31
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through and reflected by the trapped microsphere are collected both by a separate set of

free-space optics, deemed the output optics, and the input optics, respectively, in order to

monitor the position of a trapped microsphere.

2.1 The Experimental Chamber

The main experimental chamber is a “Spherical Cube” vacuum vessel (Kimball Physics,

MCF600-SphCube-F6C8 [39]), with six 6.00” ConFlat (CF) ports and eight 2.75” CF ports

allowing for a variety of optical and mechanical access points, vacuum pump ports, and

electrical feedthroughs. The bottom 6” CF port has a blank flange that serves as the

baseplate for the optical trap. Two opposing 6” CF ports in the horizontal plane are used

for the input and output of the trapping laser, which passes through AR coated windows

(Edmund Optics, 11-904), mounted at a 5° angle to emulate the affect of a wedge window and

reduce cavity affects between the window surfaces. The orthogonal pair of opposing 6” CF

are used for 1) an electrical feedthrough for the primary nanopositioning stage and 2) a large

quartz viewing window. The window port is also the primary access point when the chamber

needs to be opened, such as during the initial preparation of a trapped microsphere, described

in Section 2.6. The final top 6” CF port is connected to two capacitance manometers for

pressure monitoring, discussed in detail Section 2.1.1.

Four of the smaller 2.75” CF ports are used as electrical feedthroughs for the shielding

electrodes surrounding the trap, the motorized stages used to control mechanical devices

in close proximity to the optical trap, as well as the piezoelectric actuator used to propel

microspheres into the trap initially. The remaining four 2.75” CF ports are used for (1)

the primary pumping port (discussed in Section 2.1.1), (2) a Pirani thermal conductivity

vacuum gauge (Kurt J. Lesker Co., KJLC 275i), (3) a Residual Gas Analyzer (MKS, EV2-

220-000FT [40]), and (4) a Teflon-based fiber-optic feedthrough [41] used to flash the optical

trap with UV photons. A schematic view of the chamber, including the optical trap within,

is shown in Figure 2.1, together with a photograph.

In general, CF ports that are opened frequently make use of Viton rubber gaskets, while

CF ports that are rarely opened, or even closed indefinitely, make use of the usual copper

gaskets. In both cases, manufacturer specifications suggest base pressures of 1× 10−8mbar

are achievable, and in practice the base pressure of the experimental chamber is limited at

a much higher pressure of ∼1 × 10−6mbar due the presence of various plastics in some of
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Figure 2.1: A photograph of the experimental chamber with various ports labeled. Compo-
nents of the vacuum system will be discussed in Section 2.1.1, while the optical systems will
be described in Sections 2.2 and 2.4. The gold-coated mechanical structure visible through
the viewport is the centerpiece of the apparatus, supporting both the trapping lenses and
shielding electrodes to be discussed in Section 2.3.

the cabling used.

2.1.1 Vacuum System

In order to perform sensitive measurements with optically levitated microspheres, thermal

noise due to collisions with residual gas particles must be removed. It can also be advanta-

geous to introduce specific gas species into the experimental chamber. A vacuum and gas

handling system accomplishes both tasks.

High vacuum within the experimental chamber is achieved with a turbomolecular pump

(Pfeiffer Vacuum, HiPace 80 [42]) who’s exhaust is roughed by an dry scroll pump (Edwards
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Vacuum, XDS5-C). The turbomolecular pump is first connected to a 4.5” CF gate valve,

and subsequently adapted to a 2.75” CF cross. One port of the CF cross is connected to the

chamber through a flexible 1m long, ∼38mm inner diameter vacuum hose with 2.75” CF

terminations. A 10 cm rigid pipe and a ceramic break, both with 2.75” CF terminations,

adapt the hose to the experimental chamber, the latter electrically isolating it from the

turbo pump.

The final two ports of the CF cross are used for (1) a bypass pumping path so that

the chamber can be roughed to moderate vacuum without exposing the turbo pump to

atmosphere, and (2) a computer controlled leak valve (Pfeiffer Vacuum, EVR 116) connected

to a gas manifold in order to introduce specific gases into the chamber. The bypass path

includes a manually actuated leak valve in series with a pneumatically actuated angle valve,

so that the pumping rate can be controlled and the bypass path can be closed completely.

A schematic overview of the vacuum system is shown in Figure 2.2.

The residual gas pressure is controlled and measured between ∼2×10−6mbar and 1mbar.

The vacuum pressure is tuned by introducing or removing N2 gas and is measured by a

cold-cathode gauge for pressures below 10−4 mbar, a capacitance manometer for pressures

between 10−4 and 10−2 mbar, and a Pirani gauge for pressures between 10−3 and 1mbar.

The cold cathode gauge is found to affect the charge the MS, so it is only used to measure

the ∼2 × 10−6mbar base pressure of the vacuum system after an experiment. The capaci-

tance manometer does not cover the full range of vacuum pressures, so the Pirani gauge is

calibrated against the more accurate capacitance manometer, where there is overlap. This

system is capable of measuring the pressure to an accuracy of 10% for N2 over the range of

interest [40, 43].

The gas manifold connects the experimental chamber to six pressurized gas cylinders

containing He, N2, Ar, Kr, Xe, and SF6. Downstream of the requisite pressure regulators,

the gas cylinders are each connected by pneumatically actuated bellows valves to a common

system of stainless steel tubing, deemed the gas manifold. The manifold itself is connected

the back of the computer controlled leak valve so that, with the proper valves open, the

contents of each gas cylinder can be individually leaked into the experimental chamber.

The manifold is also connected to a dedicated dry scroll pump allowing the entire system

to be evacuated prior to filling with a specific gas, in order to ensure purity. Connections

between components are made with a variety of VCR, NPT, and SwageLok gaugeable tube

fittings. A capacitance manometer also connected to the manifold suggests base pressures
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Figure 2.2: A block diagram of the vacuum system. The vacuum gauges directly on the main
chamber are rated in Torr, although the measurements are usually converted to mbar, or Pa.
The scroll pump for the main chamber is located outside of the lab, in a hallway closet, and
connected to the vacuum system with a ∼5 cm inner-diameter steel piping system embedded
in the walls and ceiling. Similarly, the gas bottles and manifold are located outside of the
lab, in the gowning area, connected with a ∼1 cm inner-diameter steel piping system.
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of ∼1× 10−2mbar are readily achievable within the manifold, which is usually pressurized

to ∼1 bar when in use.

2.2 Source Light and Input Optics - Single-beam Trapping

With the knowledge and insight from two previous iterations of optical traps, the apparatus

being described was designed with a number of specific considerations. Most significant was

the advent of a single-beam trap, wherein the trapping, imaging, and feedback control are

all accomplished with the same beam. This has immediate advantages as extra lasers are

not required to operate the system, allowing for the mechanical access mentioned previously,

as well as vast reduction in the number of optical components required.

To best make use of this configuration, an interferometric readout was proposed. Inci-

dent trapping light that is transmitted through a trapped microsphere and refracted by its

motion is collected and made to interfere with a reference wavefront, while incident light

that is retroreflected by the microsphere is also collected and made to interfere with a sec-

ond reference wavefront. The implementation of interferometry is described in detail in

Section 2.4, although it should be noted here, as the choices of laser system and steering

optics were influenced by this design goal.

2.2.1 The Fiber Optic Laser System

The source light for the optical trap needs a long temporal coherence, in order to implement

an interferometric readout scheme. For the same interferometry, the source light needs

to be split into three different paths: one to generate the trap itself and two to use as

reference wavefronts for the interferometry. Finally, the amount of light directed to the

vacuum chamber to create the trap should have a maximal power of approximately 1W

(an empirically determined value), so that it is possible to catch and then levitate silica

microspheres with a radius of up to ∼10 µm in a vertically-oriented optical trap stabilized

by gravity.

Initially, the light is generated in a ytterbium-doped fiber laser (Orbits Lightwave, Eth-

ernal SlowLight) that lases at 1063 nm with an output power of ∼70mW. To optimize

linewidth, and thus temporal coherence, the laser is operated in a constant temperature

mode. Although this has not been measured, the manufacturer reports that this system

should have a linewidth of ∼1 kHz, corresponding to a temporal coherence preserved over



2.2. SOURCE LIGHT AND INPUT OPTICS - SINGLE-BEAM TRAPPING 37

Figure 2.3: A schematic diagram of the fiber-optic system, depicting the source laser and
all components up to the point of projection into free-space. The trap acousto-optic mod-
ulator (AOM) is usually operated at 150MHz, while the reference beam AOM is operated
at 149.375MHz. All fiber components are single-mode and polarization-maintaining, and
custom spliced for high power operation.

∼300 km of propagation in vacuum. The light exits the laser module via a polarization-

maintaining (PM), single-mode fiber (PM980-XP) terminating in a ferrule connector/angled

physical contact (FC/APC) connector. The same fiber type, PM980-XP, is used throughout

the remainder of the fiber optic system.

The output of the fiber laser seeds a ytterbium-doped fiber amplifier (Nufern NuAMP),

with a maximal output power of 10W, saturating the input stage to ensure operational

stability. The high output power usually requires free-space operation, as 10W of optical

power within a single-mode fiber is beyond the damage threshold of typical fiber connectors

(such as FC/APC). Another way to overcome this limitation is by directly splicing fibers

together, avoiding fiber connectors entirely. This can be accomplished with a number of

tools, but is especially difficult when the fibers are both single-mode and PM, as the cores are

only a few microns in diameter, and have a specific rotational alignment along the axis of the

fiber. Despite this, single-mode PM fiber splicing can be accomplished with commercially

available instruments, in particular a Glass Fiber Processor (Vytran Corporation, GPX-

3000), which has components for both cleaving and splicing fibers.

The output from the fiber amplifier is directly spliced to a high-power fiber-optic isolator

(Thorlabs, IO-L-1064), providing an extra layer of protection at the cost of some optical
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loss. The output fiber from the isolator is spliced to a 50:50 fiber-optic beamsplitter (BS)

(Gooch and Housego, FFP-8MC264G10 []), with one output for the trapping beam, and

the other for both reference beams. The trapping beam output is spliced to a fiber-coupled

acousto-optic modulator (AOM, Gooch and Housego, T-M150-0.4C2G-3-F2P) operated at

150MHz, whose output fiber pigtail is used to project the trapping light to free-space with a

fiber mount and an objective lens, discussed in the next section. The RF port of the AOM is

driven by a signal generator (Stanford Research Systems, SG382) which has been amplified

(Mini-Circuits, ZHL-03-5WF+) in order to take full advantage of the dynamic range of the

AOM. This will be discussed in more detail in Appendix D.

The reference beam output from the first 50:50 fiber-optic BS is spliced to an identical

fiber-coupled AOM which is operated at 149.375MHz in order to generate a differential

frequency shift between the trapping and reference beams, which will be critical for the

heterodyne readout discussed in Section 2.4. This AOM is driven by a separate signal

generator (Hewlett-Packard, 8643A) that has also been amplified (EIN, 400AP) for the

same reason. The output of this AOM is spliced to a second 50:50 fiber-optic beamsplitter to

source both reference beams. The reference beam for the retroreflected light interferometry

is created by coupling one of the beamsplitter outputs, a fiber pigtail, to an aspheric lens,

generating a beam with a Gaussian waist of 3mm. Both the lens and fiber are mounted in an

SM1 threaded lens tube, the latter on an externally threaded fiber-optic bulkhead (Thorlabs,

SM1F1-250). The other BS output is first spliced to a single-mode PM fiber patch cable

(Thorlabs, P3-1064PM-FC), terminating in an FC/APC connector. The reference wavefront

for the transmitted light is then created by coupling the patch cable to free space with a

zoom lens collimator (Thorlabs, ZC618APC-C), which has adjustable output beam diameter

and divergence.

The entirety of the fiber optic system, excepting the free-space projection, is depicted

schematically in Figure 2.3.

2.2.2 Free-space Optics

In some of the initial science results with previous iterations of the apparatus [24, 25], it

was suspected that extensive halos and stray light were contributing to background forces.

Halos are generated from diffusive scattering, primarily in the various refractive optics used

for beam expansion, as well as from repeated reflections from beam-steering and alignment

mirrors. Stray light is generated from specular reflections of the trapping beam, which can
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Figure 2.4: A schematic diagram of the input optics, from the point of projection into free-
space, to the beam entering the experimental chamber.

trace their origin to non-ideal reflections from internal surfaces of mirrors as well as refractive

interfaces, often referred to as ghost beams. With this in mind, the free-space optics were

designed with a minimal number of components. A schematic depiction of the system is

shown in Figure 2.4

The fiber pigtail output from the trapping beam AOM is projected to free-space and col-

limated with an infinity-corrected microscope objective (Thorlabs, LMH-20X-1064), which

generates a beam with a Gaussian waist of ∼800 µm. The objective lens is threaded into

an aluminum housing, and the relative alignment with the fiber pigtail is achieved with a

3-axis translational flexure stage (Newport, 466A), together with an optical fiber rotator

(Newport, 466A-718) to align the output polarization. The collimated beam is sent through

a free-space Faraday isolator (Electro-Optics Technology Inc, customized PAVOS Series),

which includes polarizing optics to separate the forward and backward propagating pho-

tons. This is crucial for the retroreflected interferometry, which uses light reflected from
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the lower surface of the microsphere in order to measure the microsphere’s axial (vertical)

position within the trap.

The output beam from the free-space isolator is directed toward a pair of of protected

silver mirrors, one 25mm diameter for static alignment, and a second 7mm diameter which

is mounted on a piezoelectric deflector system with two degrees of freedom for active beam

deflection (Thorlabs, ASM003). The first mirror is used to assure the beam is centered on the

second mirror, which is then used to provide stabilizing feedback to a trapped microsphere

by displacing the position of the trap to counteract forces from collisions with residual gas,

pointing fluctuations of the trapping beam, and acoustic vibrations from the environment,

among others. The deflection mirror is placed in a Fourier plane of the trap, so that de-

flections of the collimated beam produce horizontal displacements of the optical trap’s focal

point. In practice, deflections required are of the order of ∼10 µrad at a moderate vacuum

of 1.5mbar, and ∼100 nrad at the base pressure of the experimental chamber.

Both the deflection system and the Faraday isolator have relatively small clear apertures,

5mm for both, requiring a beam with narrow lateral extent. However, this is suboptimal

for generating an optical tweezer, as it significantly limits the achievable numerical aperture

with reasonable focal lengths. Thus, the beam is expanded by a factor of four with a pair

of 25mm diameter, bi-convex lenses in a refracting telescope configuration: the primary

lens having a focal length of f = 50mm and the secondary with f = 200mm to achieve

the desired magnification. The telescope lenses are co-aligned with a lens-tube and cage

system, while their relative displacement along the optical axis is fine-tuned with a pair of

High-Precision Zoom Housings (Thorlabs, SM1ZM).

The cage system, used as a break between two lens-tubes where each tube terminates in

a zoom housing with one of the telescope lenses, allows for the placement of a pinhole at the

telescope focus. The pinhole acts as a spatial filter, reducing both halo and any stray light.

Although not directly measured, the spot size within the telescope should be of the order of

a few microns, so that a pinhole with a 50 µm diameter does not significantly perturb the

output mode, even when the beam is deflected to provide stabilizing feedback. The pinhole

is aligned to the focal point of the telescope with axial adjustment via translation along

the cage system, and radial adjustment facilitated by a 2-axis flexure mount (Thorlabs,

CP1XY).

All of the free-space optics discussed require careful co-alignment in order to best preserve

the output spatial mode from the optical fiber, which is nearly Gaussian. Once aligned to one
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another, the beam entering the experimental chamber must also be carefully aligned to the

aspheric trapping lenses, as these are exceptionally sensitive to misalignments, which cause

a number of aberrations. The optical components themselves are all mounted on a custom

5-axis stage, so that following their co-alignment, the entire configuration can be adjusted

relative to the trapping lenses. Final alignment is determined iteratively by measuring and

then optimizing both the spot size and divergence angle of the optical trap, via adjustments

of the 5-axis stage. The measurement technique and a typical beam profile and divergence

are shown in Section 2.3.2.

Following magnification, the trapping beam passes through a ∼99:1 beam-sampler (Thor-

labs, BSF10-C), with the majority of the light transmitted through to the chamber input

window, discussed in Section 2.1. The ∼1% reflected from the beam sampler is directed to

a power monitoring photodiode (Thorlabs, DET10A) with a 1064 nm line filter (Thorlabs,

FL051064-10) and a 25mm focal length plano-convex lens to ensure all of the incident light

is collected onto the diode. The photocurrent is converted to a voltage and amplified by

a transimpedance amplifier (Thorlabs, AMP120), before being sent do an ADC. By com-

paring this measured optical power to an arbitrarily defined reference value, the RF power

driving the trapping beam AOM can be modulated to feedback on any measured amplitude

fluctuations (see Section 2.7).

2.3 The Optical Trap

The optical trap is a vertically oriented, single-beam trap, which has been generally de-

scribed in Chapter 1, and depicted in Figure 1.7. The input optics discussed in Section 2.2

generate a 1064 nm, horizontally polarized, horizontally propagating, and collimated beam,

with a Gaussian waist of w0 = (3.1 ± 0.1)mm. This trapping beam enters the chamber

and directly impinges on a right-angle prism mirror (Thorlabs, MRA25-P01), reflecting the

beam vertically toward the first trap lens. The lens that focuses the laser light to form the

trap is a 25mm diameter, 25mm focal-length Best Form Aspheric Lens (Edmund Optics,

89-439), which results in a trap with a w0/f = 0.12 numerical aperture given the measured

beam waist and known focal length.1 The diverging output beam is then recollimated by

1The usual formula for numerical aperture of a single lens is NA = n sin θ ≈ nD/2f where D is the lens
pupil diameter, f is the focal length, and n is the index of refraction of the medium (in this case vacuum
and thus n = 1) where the approximation sin θ ≈ θ has been made. Here, the lens pupil is not filled, and
thus we approximate D ≈ 2w0.
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an identical lens, and reflected horizontally by an identical right-angle prism mirror to exit

the chamber toward the output optics.

The lenses are epoxied within retaining rings that are, in turn, supported by a pair of

interlocking u-shaped housings, which fix the concentricity and distance between the lenses.

Their relative displacement along the optical access can be fine tuned with shim washers.

The lens housings also support six pyramidal electrodes to shield the trapping region, with

bore holes for optical and mechanical access from all six directions, where the top of the

pyramids are truncated and form a nominally cubical cavity around the focal point of the trap

lenses. Each electrode is isolated from the housing with a MACOR spacer, allowing each to

be independently biased. The housings, lens retaining rings, and electrodes are all machined

in-house from aircraft grade aluminum (alloy 7075), and commercially electroplated with

gold. A cross-sectional view of the lenses, electrodes, and the housing for both is shown

in Figure 2.5, together with a zoomed view of the trapping region, and a photograph of a

trapped microsphere, captured with a cellphone camera.

The converging input and diverging output beams propagate through the bottom and

top electrodes, respectively, whose bore holes have been coated with colloidal graphite to

reduce reflections from stray light. The bore holes in two of the four electrodes in the

horizontal plane are dedicated for mechanical access of various fabricated devices, which

are used to source electromagnetic interactions, as well as possible new interactions from

theories extending the current Standard Model of particle physics (see Chapters 7 and 8).

The bore hole in a third electrode is used for a rudimentary microscope with a view in the

xz-plane (see Section 2.5), which allows for basic monitoring of the trapping region, such

as whether a microsphere is trapped or not. The final electrode has a much narrower bore,

specifically designed to house a multi-mode fiber and a ball lens, in order to deliver UV

photons into the trapping region.

The upper and lower electrodes, as well as the fiber delivery electrode, are all modi-

fied with horizontal slots that allow two quartz panes to be inserted above and below the

trap simultaneously with a linear translation stage (Newport, AG-LS25V6), with minimal

perturbation of the optical mode. The panes, their custom mounting structures, and the

corresponding slots are partially visible in the photograph in Figure 2.5. The upper quartz

pane is long, narrow, and cantilevered from the surface of a piezoelectric actuator. The

lower surface of this pane is covered with microspheres that adhere via van der Waals forces,

and the piezoelectric actuator is used to excite mechanical modes within the quartz pane
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Figure 2.5: (left) A schematic cross-section of the trapping lenses, shielding electrodes, and
the housing structure for both. (upper right) The cubical cavity which constitutes the
trapping region. (lower right) A photograph through the primary viewing window, where
the microsphere is visible due to high-angle scattering of the trapping laser. The image
was captured with a cell-phone camera, which retains some sensitivity at 1064 nm. In the
schematic views, the foreground electrode has been suppressed, while in the photograph, it
was intentionally removed in order to see the trapped microsphere.
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in order to eject microspheres toward the optical trap. The quartz pane below the trap is

much wider, and serves to protect the lower lens from accumulation of microspheres that

fail to be trapped following ejection from the upper pane. Details of the preparation of a

trapped microsphere are included in Section 2.6.

2.3.1 Nano-positioning Stage and Mechanical Devices

As stated previously, a significant advantage of the optical levitation apparatus at Stanford

is the use of a single-beam for trapping, feedback, and imaging, together with trapping

lenses that have a relatively long focal length, 25mm, compared to typical optical tweezers.

These two properties together allow mechanical devices, to be introduced into the immediate

vicinity of the focus of the optical trap with minimal disturbance of the optical mode, as

there are no additional beams and the diffraction-limited divergence of the trapping beam

is only ∼6.5°. These mechanical devices have a number of potential uses: knife edges for

beam-profiling to characterize the optical mode of the trap (see Section 2.3.2); near-field

electrodes for system calibration and technology demonstrations (see Chapter 3); as well as

source masses to excite possible new interactions for beyond the Standard Model physics

searches (see Chapters 7 and 8).

In each application, precise positioning of the mechanical devices is critical. This is

accomplished by having the devices mounted on a series of stages, two for coarse man-

ual alignment and device insertion, and one for computer-controlled and piezoelectrically-

driven fine alignment. An individual device is first mounted to a custom-machined conical

snout (gold-plated 7075 aluminum) using a small mechanical spring together with vacuum-

compatible colloidal silver paint to ensure a conductive connection, as nearly all of the

devices used are metal-coated. The snout itself is mounted on the actuated face of a three-

axis, piezoelectrically-driven flexure stage (Newport, NPXYZ100SGV6) which has three

orthogonal axes of translation with 80 µm of travel in each direction, and strain gauges for

closed-loop control providing 4 nm resolution and 30 nm repeatability. A custom MACOR

spacer between the stage and snout ensures electrical isolation, where screws hold the spacer

to the stage, while the same colloidal silver paint attaches the snout to the MACOR spacer,

with significant clearance between the silver paint and the heads of the screws.

The piezoelectrically-driven flexure stage is mounted to a linear translation stage (New-

port, AG-LS25V6) with a custom-machined L-bracket that ensures clearance for the motion

of the flexure stage, as well as registered kinematic mounting for consistent alignment. The
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Figure 2.6: A schematic cross-section of the stack of stages, with a typical attractor device
mounted (see Chapters 7 and 8, and Appendix G). The electrode cube, including the bore
through which the device is inserted into the trap, is visible on the right.

linear translation stage has a full travel of 12mm so that the mechanical devices can be

removed fully from the trapping region when they are not in use. This entire stack sits atop

a four-axis tip-tilt stage (Newport, 9071-V) which is used to coarsely align the position of

the mechanical device relative to the optical focus, i.e. where a trapped microsphere usu-

ally resides. A cross-section of the entire assembly of stages and mounting components is

detailed in Figure 2.6.

Generally speaking, the mechanical devices used in this work resemble cantilevers, such

as those use for atomic force microscopy. They are fabricated in silicon and have a handle el-

ement shaped as a rectangular prism with characteristic dimensions 7mm×2mm×0.5mm,

off of which is cantilevered a narrow beam-like structure with characteristic dimensions

1000 µm × 500 µm × 10 µm. Where appropriate, the specific geometry of a device will be
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indicated, as well as the material composition and any underlying structure or unique coat-

ings. The fabrication of these devices is performed in-house at the Stanford Nanofabrication

Facility by the author, together with colleagues. Procedures and recipes for the fabrication

process are detailed in Appendix G.

2.3.2 Characterizing the Trap

The spatial mode and divergence of the optical trap are measured with a knife-edge tech-

nique, where a silicon cantilever measuring 475 µm × 500 µm × 10 µm in the x, y, and z

directions is scanned across the laser beam at various axial positions above and below the

focus. At the same time, the light exiting the chamber is focused down to a single photodi-

ode to monitor the power. The concept of this measurement is illustrated in Figure 2.7. Let

I(x, y, z) be the intensity of light in the vicinity of the optical trap, in units of Power/Area2

so that integrating over x and y at a particular z yields the total power of the beam P0. By

positioning the cantilever appropriately and scanning it across the trap in a single direction,

x for example, the photodiode measures the cumulative intensity

P(x, z) =

∫ x

−∞
dx′
∫ ∞

−∞
dy I(x′, y, z), (2.1)

which can then be differentiated to recover a projection of the intensity onto the y-axis. By

scanning the attractor in the y direction, the same can be done to measure the projection

of the intensity function onto the x-axis. The result from the differentiation is sometimes

referred to as a beam profile, which can be used to estimate spot size and beam quality. As is

discussed in great detail in Reference [44], measuring laser beam size and quality is not only

difficult, but the choice of methodology can be contentious. Two distinct characterizations

are used, and the results are compared.

The most straightforward technique is to fit the measured beam profile to a Gaussian

function. A naïve, unweighted fit will prioritize minimizing residuals near the beam center

where the intensity is most significant, yielding one measure of the beam’s extent. The two

left panels of Figure 2.8 demonstrate a typical beam profile near the focal point for both x

and y, each with a fit to a Gaussian intensity of the form I(x) = I0 exp
(
−2x2

w2

)
. The shape

of the optical mode near the trap center necessarily has the most impact on the behavior

of a trapped microsphere, as the microsphere remains confined to this region. It is clear

that while this method accurately describes the observed intensity in the vicinity of the
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Figure 2.7: A schematic depiction of the knife-edge technique used to characterize the spot
size and divergence of the optical trap. A gold-coated silicon cantilever is scanned across
the trapping beam at various axial positions above and below the focus, while the output
power from the trap is monitored. As the knife-edge covers and uncovers the beam, the
photodiode measures the integral given by Equation (2.1), from which the beam profile can
be recovered.
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Figure 2.8: (left) Typical results from a beam-profiling measurement for scanning the knife-
edge in both x (top) and y (bottom), with the bottom surface of the knife-edge positioned
nearest to the focus, at h = 40 µm. The data suggest the presence of a halo and/or diffrac-
tion rings with ∼few% of the maximum beam intensity. (right) Second moment of the
marginalized intensity distribution from beam-profiling as a function of axial position over
the full range of the knife-edge’s motion, fit to Equation (2.3). The plot includes a dashed
line demonstrating some interpretation of the ideal design performance, i.e. the second mo-
ment expected if the paraxial approximation was completely valid, the optical system was
perfectly aligned, and the beam was actually an ideal Gaussian beam.

beam center, there is significant structure in the tails of the beam, requiring an alternative

characterization.

First, let us limit ourselves to beams that satisfy the paraxial approximation, and define

the second moment of the beam intensity distribution, I(x, y, z), as a function of axial

position,

σ2x(z) =

∫∞
−∞

∫∞
−∞ I(x, y, z)(x− x̄)2 dx dy∫∞
−∞

∫∞
−∞ I(x, y, z) dx dy

, (2.2)

where, as written, this second moment is associated to the beam width along the x axis,

with a similar definition for the beam width along the y axis. For a symmetric Gaussian

beam with the conventional definition of the intensity distribution I(r) = I0 exp
(
−2r2

w2

)
,

the beam waist w is equivalent to the two times the square-root of the second moment,

i.e. w = 2σ as defined. Thus, for non-Gaussian beams, two times the second-moment is
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often referred to as the spot size, written as W to differentiate it from the usual Gaussian

waist. With these definitions, the spot size of any laser beam, W , satisfying the paraxial

approximation can be described by the expression,

W 2(z) =W 2
0 +M4

(
λ

πw0

)2

(z − z0)
2, (2.3)

where z is the axial coordinate, z0 is the position of the focus along the optical axis, W0 =

2σ0 is the spot size at the beam’s focal point, λ is the laser’s wavelength, and M is a

unitless parameter related to the beam propagation and divergence. Appealing to Siegman’s

explanation,

The second-moment-based beam widths Wx and Wy defined above will then propagate
with distance in free space exactly like the Gaussian spot size w(z) of an ideal Gaussian
beam, except for the insertion of an M2 multiplication factor in the far-field spreading
of the beam [44].

With these tools in hand, the calculation of the second moment can be done for each

axial position where a beam-profiling measurement is performed, allowing for an estimation

of M2, as well as some measure of the beam extent at the focus W0, by fitting the observed

spot size to Equation (2.3). The results of this procedure for beam-profiling in both x and y

are shown in the two right panels of Figure 2.8, together with the expected second-moment

for a perfectly aligned, ideal Gaussian beam, i.e. the design performance.

This characterization technique is crucial for optimizing the alignment of the stage on

which the input optics reside, discussed in Section 2.2.2. Minute adjustments are made, and

then a series of beam profiles at different heights are measured. This procedure is iterated

until the optimal beam profile and divergence are achieved. As the input optics stage has 5-

axes of control, adjustments can be made to change the angle of the trap without translating

the focal point in the horizontal plane, and vice versa, for both horizontal directions. The

data shown in Figure 2.8 were collected after just such an alignment procedure.

2.4 Output Optics and Imaging

For the same reasons that the number of free-space optical elements on the input side was

minimized, the output free-space optics are similarly frugal. The beam exits the chamber

through an AR coated window, mounted at a slight angle (see Section 2.1), immediately
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passing through a polarizing beamsplitter cube (Thorlabs, CCM1-PBS25-1064) separating

any of the incident trapping light scattered into the polarization orthogonal to the trap-

ping light’s polarization. Imaging the cross-polarized light is critical to understanding the

rotational dynamics of an optically trapped microsphere, as any birefringence in the micro-

sphere will modulate the power in the orthogonal polarization at twice the rate of rotation,

as demonstrated in Refs. [28, 38] and discussed in Chapter 5.

The output trapping beam is then de-magnified by a factor of three, again with a pair of

25mm diameter, bi-convex lenses in a refracting telescope configuration: the primary lens

having a focal length of f = 150mm and the secondary with f = 50mm. The output from

the telescope passes through a 50:50 non-polarizing beamsplitter cube (Thorlabs, CCM1-

BS014), where it is superposed with a reference wavefront, generated with a fiber zoom-lens

collimator as discussed in Section 2.2.1. The collimated reference beam can be translated and

deflected with a 6-axis mount (Thorlabs, K6XS), in order to optimize mode-matching with

the trapping beam and thus interference contrast. The resulting superposition is projected

onto a quadrant photodiode (QPD, Hamamatsu, S5980), with a custom biasing and readout

circuit.

On the input side of the chamber, there is another 50:50 non-polarizing beamsplitter

cube which combines the light retroreflected by the microsphere and separated by the Fara-

day isolator with a second reference wavefront, generated by coupling a fiber optic pigtail to

an aspheric lens as discussed in Section 2.2.1. Two mirrors on adjustable mounts allow for

a similar degree of mode-matching between the collimated reference beam and the retrore-

flected light. Their superposition is projected onto a single photodiode, where the phase

of the interfering optical fields encodes the axial position of the microsphere, as discussed

below.

2.4.1 Reflected Light Interferometry - Implementation

Some amount of the trapping light is retroreflected by the bottom surface of the microsphere,

in addition to other high-angle scatter. Assuming the retroreflected light comes from a point

source, the first trapping lens (below the sphere) will collimate the reflection, which then

propagates backward along the beam line. The Faraday isolator in the input optics separates

this back-propagating component, which is then superposed with a reference beam, the “local

oscillator” in the usual language of interferometry, and projected onto a single photodiode

(Thorlabs, DET100A). As a trapped microsphere moves up and down within the optical
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Figure 2.9: (left) A schematic depiction of the optical system used to separate light retrore-
flected retroreflected by a trapped microsphere, combine it with a reference beam, and
subsequently convert the optical interference to an electronic signal. (right) A photo of the
same system, with components annotated.
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trap (i.e. along the optical axis), the path length of the retroreflected light changes, which

is necessarily encoded in the phase of the retroreflected light, and thus in the phase of the

interference signal, as discussed in Chapter 1. A schematic depiction of this optical system,

together with an annotated photograph of the same components, is shown in Figure 2.9.

The retroreflected spot is nominally circular, but passes through small apertures in the

Faraday isolator, which would tend to produce Airy patterns or possibly asymmetric clip-

ping. The collimation of the reference beam for the reflected light interferometry discussed

in Section 2.2.1 was chosen specifically to best match the observed spot size of the light

retroreflected from typical ∼5 µm-diameter silica microspheres, after having passed through

the isolator and associated apertures.

In contrast to the ideal discussion and analytic treatment in Chapter 1, the wavefronts

of the reflected light and the first reference beam are neither perfectly flat, nor symmetric in

shape or overall intensity (although the reference beam is much closer to an ideal Gaussian).

The interference contrast is optimized empirically, by adjusting reference beam position,

orientation, collimation, and power. Adjusting the position and orientation ensures the

superposed optical fields are propagating in the same direction with maximal overlap of

the spatial modes. This is accomplished by deflecting the reflected beam with a pair of

protected-silver mirrors on adjustable mounts, as well as rotating the fiber-optical pigtail

(a polarization-maintaining fiber) to match the reference beam polarization to that of the

reflected beam. Adjusting the collimation allows the reference beam to match any curvature

of the reflected trapping beam, achieved simply by changing the separation between the

reference beam fiber-optic pigtail and the collimating lens. As a final step, the optical power

of the reference beam is increased so that the photodiode is operating at approximately half

of its saturation limit.

A simple AC-coupled transimpedance amplifier (See Appendix E) converts the oscillating

photocurrent generated from the optical interference to an oscillating voltage, which is then

sent directly to an ADC for simultaneous digitization and digital demodulation. The phase

of the demodulated signal yields the z position of the microsphere, where the phase is

estimated in real-time, as discussed in Appendix D. The real-time estimate of this phase can

be used to generate active feedback in order to stabilize the vertical (axial) motion of the

microsphere by modulating the beam power (see Section 2.7). In contrast, the amplitude of

the demodulated signal is used mostly as an auxiliary measurement to ensure alignment and

optimal mode-matching. Although a higher-order effect, a large signal amplitude relative to
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any noise ensures a robust determination of the signal phase.

2.4.2 Transmitted Light Interferometry - Implementation

As discussed previously, the light that is transmitted through a trapped microsphere and

collimated by the upper trap lens exits the chamber through an AR-coated window, is de-

magnified to reduce the spot size, and subsequently combined with a reference beam in a

50:50 non-polarizing beamsplitter cube. The resulting superposition impinges on a QPD,

capable of imaging the beam displacements along two orthogonal axes. The reference beam

is kept stationary, while the transmitted trapping beam is displaced due to the motion of

the microsphere. As the trapping beam moves about, the mode-matching between the two

interfering beams changes, and thus the amplitude of the resulting interference signal on

each quadrant of the QPD changes, which is the basis for the measurement of the horizontal

degrees of freedom, as discussed in Chapter 1. A schematic depiction of this optical system,

together with an annotated photograph of the same components, is shown in Figure 2.10.

Much like for the wavefronts discussed in the previous section, the wavefronts of the

transmitted light and the second reference beam are neither flat, nor symmetric in shape

or intensity. As before, the interference contrast is optimized empirically, with nominally

the same guiding principles. The zoom-lens collimator and six-axis alignment stage for the

second reference beam, discussed in Section 2.2.1, make this task relatively straightforward.

The ideal alignment has equal power (from both beams) impinging on each quadrant of the

QPD.

The QPD used has a “common-cathode” configuration, so that one can apply the same

positive bias voltage to all quadrants, whilst measuring the resulting photocurrent sourced by

each of the four anodes separately. Each quadrant is AC-coupled to its own transimpedance

amplifier, with a second adjustable gain stage following, while the DC photocurrent is sunk

to ground through an inductor in a “tee” configuration with the coupling capacitor. The

entire biasing and readout circuit is of custom origin and detailed in Appendix E.

Following amplification, the oscillating signals from all four quadrants are sent to an ADC

for simultaneous digitization and demodulation. For the transmitted light interferometry,

the distribution of light across the QPD is the quantity of interest, which is obtained by

comparing the amplitudes of the interference photocurrent in each of the quadrants, after

the signals have been demodulated. Using standard Cartesian coordinate quadrants (i.e. ‘I’

for x, y > 0, ‘II’ for x < 0 ∧ y > 0, ‘III’ for x, y < 0, and ‘IV’ for x > 0 ∧ y < 0), an estimate
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Figure 2.10: (left) A schematic depiction of the output optical system which handles the
light transmitted through a trapped microsphere, de-magnifying the beam to reduce spot
size, superposing with a reference beam, and finally, converting the optical interference to
an electronic signal. (right) A photo of the same system, with components annotated.
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of the beam displacement is given by

x =
AI +AIV −AII −AIII∑

iAi
and y =

AI +AII −AIII −AIV∑
iAi

, (2.4)

with Aα being the demodulated amplitude of the digitized signal in each of the quadrants α.

The horizontal and vertical differences are normalized by the sum so that power fluctuations

are suppressed in the estimates of beam displacement. These estimates are calculated in real-

time within the FPGA that performs the demodulation, as is discussed in Appendix D, so

that they can be used to generate active feedback in order to stabilize the horizontal motion

of the microsphere by deflecting the beam with the piezoelectrically-driven deflection mirror

discussed in Section 2.2.2.

The phases of the oscillating signals from each quadrant are not explicitly used in esti-

mating x or y, or in generating the horizontal feedback, however, they are extremely useful

during the optimization of interference contrast and alignment. For two ideal Gaussian

beams interfering in the manner described, the phase of the interference in each quadrant

should be the same. Angular misalignments between the transmitted trapping beam and

the reference beam generate phase shifts between quadrants. Thus, “optimal” alignment for

this interference measurement is achieved by closely matching both the amplitude and phase

of the interference signals in all of the quadrants, via adjustments of the reference beam,

while a microsphere is within the trap. In fact, even with active feedback turned on and the

system at high vacuum, adiabatic adjustments to the optical alignment are possible without

jeopardizing the stability of a trapped microsphere.

2.4.3 Stray Light Rejection

Immunity to extraneous sources of light is critical for short-range force sensing where me-

chanical devices that can scatter light are brought in proximity to a trapped microsphere.

Heterodyne systems, such as the one described here, provide substantial rejection of light

propagating along a path that is different from the desired optical axis. Consider a point

source of scattered light that is displaced orthogonal to the optical axis, but in the focal

plane of the trap, as this will be the nominal position of mechanical devices during force sens-

ing measurements. The collimated wavefront of scattered light from this displaced source

will arrive at the QPD at an angle relative to the wavefront propagating along the main

optical axis, and thus relative to the reference wavefront. The relative angle between two
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Figure 2.11: Interference contrast vs radial position in the focal plane of the trap, for three
distinct sets of measurements, taken for consistency, and shown with differing marker shapes.
The solid curve represents the prediction of Equation. (2.5) calculated with measured beam
waists and known focal lengths. Data is normalized to a maximum of one and centered.
The width of the predicted profile is not fit to data. The non-Gaussian tails in the data are
likely the result of the halo in the trapping beam, as seen in Figure 2.8.

wavefronts causes them to interfere both constructively and destructively simultaneously,

reducing their combined contribution to the total interference signal and rejecting angled

wavefronts. Then, for a detector positioned in the Fourier plane of the trap, angular rejection

corresponds to displacement rejection in the focal plane of the trap.

The angular rejection of the heterodyne system described is estimated by considering

the interference of two Gaussian beams at their focus and separated by an angle α between

their wavefronts. The profile of angular rejectionH(α) can be computed from the normalized

integral
∫∫

| #  –

E1+
#  –

E2|2dA with
#  –

E1 and
#  –

E2 the electric fields associated with the appropriately

tilted Gaussian beams. The integral is decidedly difficult, and is thus expanded in a power

series assuming α is small. The resulting profile of scattered light rejection is given by,

H(∆x) ≃ exp

[
−(2π/λ)2w2

1w
2
s

4(w2
1 + w2

s)

(
∆x

d

)2
]
, (2.5)

where ws is the waist associated with the source of scattered light imaged onto the detector,
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and ∆x = dα. This result can be compared with data collected by using the trapping beam

as a test source of light and angling the reference beam, with a single-channel photodiode

placed in the detector focal plane, in the place of the QPD. The response, calibrated in terms

of position at radial distances ∆x from the center of the trap, is shown in Figure 2.11, along

with the prediction of Equation (2.5). The tails of the distribution present in the data, but

not the calculation, are likely due to interference of the reference beam with the halo of the

trapping beam, shown in Figure 2.8.

2.5 Auxiliary Optics

In addition to monitoring the center-of-mass motion of a trapped microsphere, it is useful to

characterize the microsphere’s rotation, as well as the region of space surrounding the mi-

crosphere’s nominal position within the trap, as will become apparent in later chapters. The

latter can be accomplished in a straightforward manner with simple camera and lens sys-

tems, both to monitor light scattered by the trapped microsphere, as well as light generated

by the reflection of illumination beams from objects in close proximity to the microsphere.

The former, however, does not have a generic solution, and instead depends on the specifics

of the trapped particle and the trapping light.

2.5.1 Cross-polarized Light Monitor

Silica microsphere’s grown via the Stöber are nominally amorphous, although there exist

crystalline grains who size depends significantly on the growth conditions. As a result of

the crystalline grains and non-spherical geometry, silica microsphere’s exhibit varying levels

of residual birefringence (See Chapter 5), as well permanent electric dipole moments (See

Chapters 3, 5, and 7), both manifestations of an anisotropic polarizability tensor.

Now, consider such a microsphere within an optical trap whose light has a fixed linear

polarization. As the microsphere rotates within the optical trap, the residual birefringence

couples some of the trapping light into the polarization orthogonal to the trapping beam,

which will be referred to as cross-polarized light. The power of the cross-polarized light

modulates as the orientation of the microsphere changes, which can be used to characterize

the orientation and rotation speed. This will be discussed in significant detail in Chapter 5,

but a rudimentary explanation is necessary to understand the purpose of the following

components.
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Figure 2.12: A schematic depiction of the output optical system to separate and charac-
terize the cross-polarized light generated by rotations of a trapped microsphere. Linearly
polarized light enters the chamber and interacts with a trapped microsphere. Rotations of
the microsphere in the horizontal plane couple some of the linearly polarized light into the
orthogonal polarization, which can then be separated by a polarizing beamsplitter (PBS)
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To separate the cross-polarized light, there is a polarizing beamsplitter cube (Thor-

labs, CCM1-PBS25-1064) immediately following the AR-coated window through which the

transmitted trapping light exits the chamber. The cross-polarized light from the trapped

microsphere is then directed toward a single photodiode (Thorlabs, DET10A) using a pro-

tected silver mirror, with a converging lens to ensure all of the light is incident within the

active area of the photodiode. This optical system is detailed in Figure 2.12.

A transimpedance amplifier (Thorlabs, AMP120) converts the photocurrent to a voltage,

which is further amplified and filtered by low-noise voltage preamplifier (Stanford Research

Systems, SRS560). The SRS560 has two outputs, one of which is sent directly to an ADC as

part of the main data acquisition system, while the other is sent to a secondary control and

acquisition system dedicated entirely to driving and characterizing rotations of a trapped

microsphere. The details of both electronics systems are detail in Appendix D.

Despite the use of polarization-maintaining fiber-optic cables, and various polarizing

optics, there is always some excess, but roughly constant, amount of cross-polarized light,

even in the absence of a trapped microsphere. Generally speaking, this is attributed to

imperfect reflections and scattering, especially from mirrors used to align some of the optical

elements, as well as finite polarization extinction ratios in practical polarizing optics, roughly

20 dB to 30 dB without cavity-based mode cleaners. Thus, only power modulations of the

cross-polarized light are used to infer rotational motion of the microsphere, and there is no

information at DC.

2.5.2 Side-View Microscope

In addition to the high-bandwidth, photodiode-based imaging systems dedicated to charac-

terizing motions of the microsphere, there are two microscopes used to view the region of

space surrounding the optical trap. Both make use of CMOS cameras and relatively simple

lens systems.

The first of the two, which will be referred to as the side-view microscope, is dedicated to

light scattered at high-angle from the microsphere itself. The silica microspheres commonly

used in this apparatus are amorphous and not AR-coated, so there is significant reflection

and scattering. The scattered light can be approximated as coming from a point-source,

due to the microsphere’s dimensions, with some angular distribution about the optical axis.

Some of the light that is scattered horizontally is collected and converged by a 25mm focal

length lens mounted in the side of the electrode cube nearest the input flange, with optical
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Figure 2.13: (left) A schematic depiction of the side-view microscope dedicated to light
scattered at high-angle from a trapped microsphere. A single lens collimates the scattered
light which is collected in a CMOS camera. (right) An example image captured with this
microscope while a microsphere is within the trap. The circular feature visible is the opening
of one of the truncated pyramidal electrodes.

access provided by one of the electrode pyramids and its conical bore. This light exits

the chamber through a secondary AR-coated window mounted just above the main input

window for the trapping light, and impinges directly on the surface of a CMOS camera

(Edmund Optics, EO-0513).

A schematic depiction of the side-view microscope with an example image is shown in

Figure 2.13. In the example image, the spot corresponding to the microsphere is saturated,

and appears much larger than the microsphere itself. This is due, in part, to the use of a

only a single converging lens which itself is designed for 633 nm light2, so that the image of

the microsphere is not properly focused, and the expected size of the image is small relative

to the active area of the camera.

The primary use of the side-view microscope is to observe whether a trapped microsphere

is present or not, so the clarity and precision of the image are unimportant. If a microsphere

2A previous iteration of the apparatus without interferometry made use of a 633 nm imaging beam incident
from a horizontal direction, so that vertical motions of the microsphere could be observed. The focusing
lens for this previous imaging system was left in place, as a properly focused image was unnecessary.
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has significant defects or is otherwise abnormal (e.g. two fused into a dumbbell, a cleaved

portion of a sphere), it will often behave strangely within the trap, oscillating rapidly up and

down, or flashing a large amount of light into the side-view microscope. Thus the microscope

is also used as a qualitative filter for well-behaved microspheres. During preparation of a

trapped microsphere (discussed in Section 2.6), this simple microscope can also be used to

assess, roughly, the axial position of the microsphere.

2.5.3 Top-View Microscope

The second microscope is a reflected light microscope dedicated to characterizing the position

of mechanical devices within close proximity to the microsphere. One such device was the

silicon cantilever discussed in Section 2.3.2 and used to profile the trapping beam with a

knife-edge technique. The microscope itself consists primarily of an illumination beam, a

single additional lens, and a CMOS camera (Allied Vision, Mako U-29B). The illumination

beam is generated with a 1064 nm, fiber-coupled diode laser (Axcel Photonics, M9-A64-

0300), which is projected to free-space with an FC/APC bulkhead, and collimated with a

25mm focal length aspheric lens housed within a lens tube mount that allows adjustment

of the lens position relative to the fiber tip. The large linewidth inherent to a diode laser,

∼1 nm, ensures there is negligible optical interference with the trapping or reference beams

(i.e. the beam is incoherent).

The illumination light is injected into the system first via a 50:50 non-polarizing beam-

splitter cube (Thorlabs, CCM1-BS014), which eventually separates some of the reflected

light for imaging with a camera. Following the first cube, there is a second polarizing beam-

splitter cube which separates the cross-polarized light for the auxiliary monitor discussed

in the previous section. Although the illumination light is initially unpolarized, the second

beamsplitter cube injects only the polarization orthogonal to the trapping beam, further

preventing interference between the microscope illumination beam and the trapping beam.

The injected light is not well collimated by design (de-focus induced via adjustments of the

collimating lens), so that after passing through the upper trap lens, the illumination light

has a large spatial mode at the axial position of the trap, ensuring objects in the vicinity

of the trap can be seen. Reflected illumination light propagates backward along its incident

path (i.e. the output path for the transmitted trapping light), eventually passing through

the initial 50:50 non-polarizing beamsplitter cube and impinging on a 100mm focal length

lens, which projects the image onto the active area of the camera.
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Figure 2.14: A schematic depiction of the top-view microscope dedicated to light transmitted
through a trapped microsphere, as well as the imaging of devices within the trapping region.
(inset) An example image captured with this microscope while a microsphere is within the
trap and a mechanical device is in proximity. Due to imperfect polarization, some amount
of the trapping beam is visible and indicative of the position of the microsphere. The image
is significantly aberrated by the aspheric trapping lens through which the light must pass.
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A schematic depiction of the top-view microscope and some of the surrounding optics,

together with an example image is shown in Figure 2.14. Within the example image, a

trapped microsphere is joined by another mechanical device in close proximity, where the

light reflected from the device is visible together with the cross-polarized light from the

trapping beam. The device shown in the image is known to have sharp rectangular cross-

sections and internal features (See Chapters 3, 7, 8 and Appendix G), so the significant

aberrations induced by the aspheric trap lens are clearly visible. However, these aberrations

can be calibrated to an extent, so that images captured by the top-view microscope can be

used to asses the relative position between the trap and any mechanical device.

The mechanical devices brought in close proximity to the microsphere have their posi-

tion precisely controlled by the nanopositioning stage discussed in Section 2.3.1. By moving

a device over a grid of known positions and saving an image of the device at each grid

position as a calibration, image correlation and registration algorithms can be used to de-

termine an arbitrary device position within the grid, based on the microscope image at that

arbitrary position. In this way, it is possible to calibrate for the significant aberrations,

without actually correcting them optically. This technique will be discussed in more detail

in Chapter 3.

The next generation of the apparatus, which has been built and is under operation [37] at

the time of writing, has a pair of much more sophisticated microscopes in place of the side-

and top-view microscopes discussed here, with significant magnification that can generate

proper images of trapped microspheres.

2.6 Microsphere Preparation

Obtaining a trapped microsphere that is useful for precision measurements is a long and

potentially arduous process, with a number of low-yield steps, as well as necessary actions

that can prove dangerous for a microsphere’s livelihood. While the process detailed here

pertains purely to the heuristic and technical aspects of preparing a microsphere, the author

cannot discount the importance of repeated honorary rituals such as dancing and chanting,

which appease the deities in charge of microsphere trapping (colloquially referred to as “the

bead gods”). The author recommends establishing a good rapport, achieved by consistent

observance of the established group rituals.

There are two generally accepted methods to get a microsphere within an optical trap,
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although a variety of others exist. The most common methods make use of the law of large

numbers, wherein a veritable cloud of microspheres are thrown into the vicinity of the trap,

with the hope that one member of the cloud will be incident directly into the focus of the

trapping beam, where optical confinement can keep the microsphere in place. In one method,

spheres are suspended in a vacuum-compatible solvent like isopropanol or ethanol, which

is then nebulized inside of the experimental chamber. Eventually, a droplet will encounter

the optical trap, vaporizing the solvent and retaining the microsphere within, assuming the

concentration of the suspension has been tuned such that there are 0− 1 microspheres per

droplet. The obvious downside of this method is the continual and intentional coating of the

chamber interior with the solvent used to suspend the microspheres, especially problematic

if there are non-trivial impurities in the solvent.

The second common method involves mechanically “throwing” a cloud of microspheres

at the trap. This is usually accomplished by piezoelectrically exciting a surface that has

been covered with microspheres, driving mechanical modes of the surface, which then ejects

some of the spheres away from the surface. This is the preferred method for this apparatus,

and will be described below.

2.6.1 The “Bead Dropper”

Following manufacture and sale, the microspheres begin their journey as a dry powder of

roughly N = 1010 spheres, the bulk of which remains in storage. A small portion of these

spheres (∼1 − 2% of the total) are removed from the bulk supply and stored on a glass

microscope slide. The microscope slide is placed on a hotplate and heated to 200 °C in order

to dry the spheres and remove any residual water or other solvents. A long and narrow

quartz pane with dimensions 26mm× 2.5mm× 0.5mm, referred to as the “bead dropper”,

is then pressed into the pile of dried microspheres on the slide, such that the microspheres

remain attached to the bottom surface of the bead dropper via Van der Waals forces. While

the bead dropper and the slide are pressed together, the dropper is moved in a circular

motion to distribute the microspheres as even as possible on the surface, ideally creating a

monolayer. The small amount of microspheres placed on the microscope slide can last many

months and are repeatedly heated to ensure the microspheres are dry before coating the

bead dropper.

Although not obvious, this “bead smearing” step is quite important to successful trap-

ping. If there are too few microspheres, the low-yield steps later in the process can present
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Figure 2.15: Photograph of the bead dropper, the piezoelectric actuator, and the supporting
structure. The bead dropper has been been prepared as described in the text, and a layer
of microspheres is visible near the far end. An SEM image of the same lot of microspheres
is included.

a significant challenge, while if there are too many microspheres (i.e. a thick layer, many

spheres deep), it’s difficult to reliably trap a single sphere, and the high density can interfere

with the critical steps. For the bead dropper and piezoelectric actuator used here, a ‘good’

bead smearing is determined by holding the dropper up to the room lights, and looking for

an optical density of about 0.75 to 1.5 in the covered region.3 The bead dropper and a

stereotypical smearing are showing in Figure 2.15.

The end of the bead dropper opposite from the layer of microspheres is attached to the

actuated surface of a single piezoelectric chip (Thorlabs, PA4DGW), which is used to excite

multiple mechanical modes within the bead dropper, and thus eject microspheres from the

surface to which they are adhered. In particular, the piezoelectric actuator is driven with

a fixed DC bias, usually ∼half of the maximally allowed voltage to ensure their is never

a negative driving voltage, plus a chirp signal from a direct digital synthesis waveform

generator (Hewlett Packard, 3325b). The chirp passes through an RF amplifier with a gain

of 30 dB, as well as the requisite slew rate in order to drive the capacitive load that is the

piezoelectric chip. A typical chirp lasts 1 s, sweeping linearly across the frequency range

150 kHz to 300 kHz so that the drive has a relatively rapid dwell time on each mechanical

mode of the dropper. The amplitude of the chirp is determined empirically for a particular

3This optical density has never been measured and is an off-the-cuff estimate from experience.
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type and/or size of microsphere. For example, larger silica microspheres (rMS ≳ 3.5 µm)

appear to require less drive, as compared to their smaller counterparts, in order to be

detached from the same quartz bead dropper.

This method of delivery is discussed in great technical detail in the PhD thesis of Tong-

cang Li [31] for the interested reader. For our purposes, the description here is both complete

and reproducible. Although only conjecture, this method seems robust against changes of

the bead dropper geometry or composition, as well as the use of different piezoelectric ac-

tuators and their accompanying fixtures, assuming of course the experimenter takes care to

drive the piezoelectric actuator at frequencies appropriate for the mechanical modes of the

bead dropper used, often informed by finite element analysis.

In this apparatus, the piezoelectric chip itself is mounted to a custom metal fixture on

a linear translation stage (Newport, AG-LS25V6). Part of the fixture also supports a wider

quartz pane, referred to as the “bead catcher”, which sits directly below the bead dropper

and extends past it. The bead dropper and bead catcher are simultaneously inserted above

and below the trap, respectively, making use of the linear translation stage and entering

through dedicated slots in the electrode structure, as detailed in Figure 2.16. Once in place,

the piezoelectric actuator can be driven as described above in order to eject microspheres

from the bead dropper, toward the optical trap.

2.6.2 Trapping

In order to trap a microsphere using the delivery mechanism described, both a high laser

power and some ambient residual gas within the chamber are required. The high laser power

ensures a deep potential well for the microsphere within the trap, which can encourage radial

confinement of the microspheres as they fall, as well as providing sufficient radiation pressure

so that a microsphere can be trapped over a wide range of axial positions above the focus,

where the irradiance is greatest. Recall from Chapter 1 that for a vertically-oriented optical

trap with low numerical aperture and stabilized by gravity, the equilibrium position of a

microsphere is determined by the radiation pressure, which scales with the optical power.

Thus, higher optical power means that the equilibrium position resides above the focus and

has a much larger lateral extent, both of which are due to the divergence of the beam. Let

P0 be the power of the beam for which the microsphere’s equilibrium is at (or slightly above)

the focus of the trap. A rule-of-thumb that has proved reliable for silica microspheres in this

type of configurations is that one needs approximately 10×P0 in order to initially catch the
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Figure 2.16: Schematic cross-section of the electrode cube and trapping lenses, highlighting
the bead dropper, bead catcher, and the slots through which they enter the beam path above
and below the optical trap. The components are shown near to their full extension, and can
be retracted by 12mm using the translation stage shown.

microspheres as they fall.

The ambient residual gas in the chamber helps to partially arrest the motion of the

microspheres ejected from the dropper, as well as provides mechanical damping for the

microsphere’s center of mass motion within the trap thus encouraging confinement. It has

been found found, for silica microspheres in the size range rMS = 2.3 µm to 5 µm, that filling

the chamber with N2 at pressures in the range 1mbar to 10mbar provides both sufficient

drag to slow the microsphere’s fall, as well as acceptable damping of the center of mass

motion. Higher pressures are possible, however they vastly increase the time required to

pump the chamber down to a high-vacuum environment, as the action of pumping creates

wind which can violently remove a microsphere from the optical trap if the pumping is not

exquisitely controlled with the system described in Section 2.1.1. This wind effect is observed

at higher pressures where viscous flow dominates. For this apparatus, the transition to free

molecular flow of N2 in the vicinity of the optical trap is around a pressure of ∼0.01mbar.

With a coated bead dropper and the chamber fully closed, the procedure to trap a

microsphere proceeds as follows:
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1. Increase optical power and ambient pressure.

2. Insert bead dropper and bead catcher above and below the trap, respectively.

3. Drive piezoelectric actuator with a 1 s chirp as described.

4. Observe side-view microscope to check for a trapped microsphere.

5. If a microsphere is present, proceed. Otherwise, repeat steps 3 and 4, slightly increasing

the drive amplitude at each iteration.

6. Retract bead dropper and catcher from the trap.

7. Incrementally lower optical power to bring the microsphere closer to the focus.

The drive amplitude for the piezoelectric actuator is increased at each iteration of driving,

presumably because there is some distribution of contact forces for the microspheres attached

to the dropper. Indeed, if the drive amplitude is not increased, initially some microspheres

will fall, but they quickly stop. Often, Steps 3 and 4 have to be repeated 10 to 20 times

before a particle gets trapped, and each repetition removes more microspheres, making this

a relatively low-yield process. Additionally, trapped particles can be lost during step 6,

due to mechanical vibrations associated to the linear stage which inserts and retracts the

dropper/catcher, as well as the scattering of the trapping beam that occurs as the edge of

the bead catcher passes through the beam and perturbs the optical mode. The process is

quite reliable despite the low-yield, and has been tuned only tiny amounts during the course

of this work (roughly ∼6 years).

Although reliable, a non-negligible portion of the objects that get trapped are “weird”.

One type of weirdness that is commonly observed is that the axial position of the trapped

particle (as seen by the side-view microscope) for a particular optical power is inconsistent

with the known size of the microspheres, suggesting the trapped particle is either too light

or too massive. The second commonly observed weirdness is that the image of the trapped

particle in the side-view microscope is flashing wildly, either in intensity, or position of the

particle within the image. When any such weirdness is observed, the trapped particle is

usually abandoned by temporarily turning off the optical power, allowing the particle to fall

under the influence of gravity. This selection step most often occurs before the bead dropper

is retracted, so that the abandoned particle is caught by the bead catcher.

It remains somewhat mysterious why such a large proportion of the initially trapped

objects exhibit this weird behavior. As will be discussed in Chapter 4, large populations

of microspheres characterized with scanning electron microscopy, and from the same source
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Figure 2.17: Amplitude spectral density (ASD) of microsphere motion along the radial axis
x, for various different microsphere heights within the trap. The signal is uncalibrated. The
resonant frequency from a fit of the ASD to Equation (B.4) is projected onto the horizontal
plane below the ASDs. It is clear that as the height is lowered (warmer colors) the radial
resonant frequency is increasing.

stock used for trapping, appear to not only be very consistent in size, but reasonably defect-

free. It’s possible that there are variations in internal structure, not visible to electron

microscopy, that alter the interaction with the optical trap, but this is speculation.

Once a well-behaved microsphere has been trapped, and the dropper/catcher has been

retracted, the optical power is lowered to bring the microsphere closer to the focus. With

the 1.5mbar of residual N2 gas inside the chamber, the trapped microsphere is subject to

collisions with gas particles which in turn impart momentum and drive the microsphere

isotropically with white noise. Within the trap, the microsphere behaves as a damped

harmonic oscillator, and thus has a very characteristic response spectrum, given by Equa-

tion (1.9). The frequency of the resonance within this spectrum is directly related to the

optical spring constant, which is maximized at the focus, as was found in Chapter 1. Thus,
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as the microsphere is lowered within the trap by reducing the optical power, the radial res-

onant frequencies increase and can be maximized, as shown in Figure 2.17. It is assumed

that the microsphere resides at the focus of the trap as a result of this procedure.

2.7 Feedback and Calibration

Prior to pumping down the chamber for any type of precision measurement, a microsphere

trapped by the above procedure must be stabilized with active feedback in order to retain

it within the trap for long periods of time. Then, once the chamber has been brought to

high-vacuum to reduce thermal effects, the response of the system to external forces needs

to be calibrated, and the microsphere needs to be electrically neutralized to help minimize

background forces from electrostatic effects. These topics are described below.

One of the advantages of optical tweezers is that the suspension and confinement of

a trapped particle is determined almost entirely by the optical interaction between the

trapping beam and the particle. However, this also means that fluctuations in this interaction

directly affect the position and acceleration of the trapped particle. Fluctuations of the

trapping beam’s optical power, pointing, and polarization all apply forces and torques to

the trapped particle, which can cause instabilities, as well as drive the microsphere through

non-conservative orbits [30]. Additionally, at high-vacuum, there is very little damping from

the residual gas, and the resonant response of the microsphere within the trap has a high

quality factor. Fluctuations and transient excitations (i.e. acoustic noise, or impact-driven

vibration of optical components) can drive this resonance and eject the trapped microsphere.

Radiometric forces can also play a role at moderate pressures, although this hasn’t been

studied extensively in this work.

It should be noted that in some of Ashkin and Dziedzic’s original work they were able

to trap both silicone oil droplets and microspheres made from fused silica at high vacuum

(1 × 10−6mbar), without the use of feedback [8]. The authors attributed this achievement

to passive stabilization of their beam steering optics, as well as the materials having low

loss (as compared to Stöber microspheres), which reduce sources of technical noise that

cause instabilities, and minimize radiometric forces during pumpdown, respectively. Recent

work has demonstrated the stable trapping of microspheres produced via the Stöber process,

without feedback and at high vacuum [34], a success due to the vast reduction of pointing

fluctuations in their apparatus from a combination of different efforts.
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2.7.1 Stabilizing Feedback

In any case, active feedback is used in this system in order to stabilize both the center-of-mass

motion of optically trapped microspheres, as well as intensity fluctuations in the trapping

beam. As will be discussed in detail Appendix D, estimates of a trapped microsphere’s

position in x and y are calculated in real time by an FPGA, making use of the measured

differences in interference photocurrent across a quadrant photodiode. Similarly, the FPGA

computes an estimate of the z position from the measured phase of the retroreflected light,

relative to a stationary reference beam. In contrast, the amplified photocurrent from the

power-monitoring photodiode is digitized directly, and assumed to be proportional to the

injected optical power P. Control signals can then be computed by the same FPGA based

on these estimates of x, y, z, and P, together with user-defined parameters, which are

ultimately used to exert forces on a trapped microsphere.

There are a multitude of different feedback algorithms one might consider using. Here, we

adopt the Proportional-Derivative-Integral (PID) formalism to generate stabilizing feedback.

Essentially, for a given coordinate xi ∈ {x, y, z} (or the power P), an error signal ei(t) =

xi(t)− x0,i is defined, where x0,i is the desired setpoint for the microsphere’s position along

this coordinate. The resulting control signal is computed as,

PIDi = KP,i ei(t) +KD,i
dei
dt

+KI,i

∫ t

t−T
ei(t

′) dt′, (2.6)

where KP,i, KD,i, KI,i, and T are user-defined quantities that control the scale of each of

the separate feedback terms. The KP,i term, ‘proportional’, can be used to increase the

apparent spring constant and stiffen the trap about the desired setpoint (note the similarity

to a Hooke’s law potential). The KD,i term, ‘derivative’, is velocity dependent so it can

be used to apply drag forces and increase the damping experienced within the trap. The

KI,i term, ‘integral’, helps to offset slowly fluctuating forces that might push a trapped

microsphere preferentially in one direction for a long period of time, for example due to a

drift in alignment or collimation. In practice, the integral is performed with T → ∞, with

the caveat that the entire integral can be set to zero arbitrarily, essentially to ‘clear the

memory’ of the integral gain term, sometimes necessary after changing parameters.

The first level of feedback implemented is independent of a trapped microsphere and

is intended to stabilize intensity fluctuations of the trapping laser. The fiber-optic laser

amplifier itself has an internally stabilized output which performs quite well across a range
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of frequencies. However, thermal fluctuations in the fiber-optic components downstream of

the amplifier add low-frequency noise that requires correction. It has been found that an

integral gain term from the error signal for the measured power P is sufficient. Feedback is

accomplished by modulating the RF power sent to the trapping beam AOM, via an external

modulation port on the signal generator. Note that scaling the value of KI,i is akin to

changing the step response time of the feedback, as the integral will continue accumulating

until the quantity KI,i

∫
(...) is large enough to offset the applied step.

With the power stabilized, error signals derived from the coordinates x, y, and z can be

used to actuate components of the system in order to stabilize the center-of-mass motion of

a trapped microsphere. Feedback forces can be applied radially, in the x and y coordinates

of the horizontal plane, by manipulating the position of the optical trap with deflection

optics. Recalling the input optics discussed in Section 2.2.2, there is a high-bandwidth,

piezoelectrically driven deflection mirror (Thorlabs, ASM003), located along the waist of the

collimated beam prior to its injection into the chamber. This focal plane (the beam waist)

is a Fourier plane of the optical trap’s focal plane, such that deflections of the collimated

trapping beam here produce radial displacements of the optical trap itself, exerting a force

on the trapped particle toward the new equilibrium position. Control signals for x and

y calculated within the FPGA are the inputs to a multi-channel, high-voltage piezoelectric

driver (Thorlabs, MDT693), which in turn drives the axes of the deflection mirror to produce

displacement of the trap proportional to the applied voltage.

In the axial direction, feedback forces can be applied by modulating the optical power and

thus the radiation pressure force applied to the trapped microsphere. As discussed in Chap-

ter 1, an optical tweezer with a low numerical aperture essentially has no axial gradient force,

and thus the axial equilibrium of a trapped microsphere within such a vertically-oriented

tweezer is determined by a balance between gravity and radiation pressure. Modulation of

the radiation pressure force is accomplished with the fiber-coupled AOM within the input

optics (see Section 2.2.1), which tunes the optical power of the trapping beam injected into

the chamber.

An immediate concern one might (rightfully) have is that the feedback to stabilize P
and z may interfere with one another. The two error signals are derived from different

measurements that are not entirely independent (e.g. power fluctuations induce real forces

on the microsphere, which can be observed in the z measurement), however there is only one

actuator to stabilize both P and z. Essentially, the combined feedback can ‘double-count’,
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resulting in over-corrections and unstable behavior. To mitigate this effect, the error signal

for the P feedback is modified slightly eP(t) → e′P(t) where

e′P(t) = P(t)− P0 − g[PIDz(t)], (2.7)

where the function g[PIDz(t)] is an empirically determined proportional scaling, although it

can include phase shifts to offset the time delay from the nested feedback structure. The ideal

solution to this double-counting would be to have two AOMs in series along the trapping

beam, with a beam-sampler and power measurement photodiode nestled in between, such

that the upstream AOM can be used to correct solely power fluctuations measured by the

sampler and photodiode, and the downstream AOM can be used correct for actual axial

motions of the microsphere measured by the retroreflected interferometer.

A simple block diagram of the feedback system as it exists is shown in Figure 2.18,

included the nested structure with the laser power feedback.

The microsphere position along the axial coordinate is critical to control due to the

geometry of the optical trap itself, as well as a more technical limitation. With a low

numerical aperture and a vanishing axial gradient force near the focus, the optical spring

constant in the absence of active feedback approaches 0 as the microsphere gets near the

focus. Thus, the associated potential well is very shallow, and a trapped microsphere can

easily be ejected by fluctuations in laser power or any of the aforementioned noise sources.

Active feedback, specifically a proportional gain term, can provide a replacement restoring

force to maintain confinement about a desired setpoint, usually near the focus. The value

of KP,i can be increased arbitrarily to tune the spring constant, although signal-processing

time delays inherent to the feedback eventually cause instability when KP,i becomes too

large.

From a more technical standpoint, minor misalignment of the input beam can result in

a tilted tweezer, where the direction of propagation is not truly vertical. This necessarily

couples the imaging and feedback axes, as the z position interferometer is sensitive to axial

motion within the trap, which now includes a horizontal component (visible to the x − y

interferometer) due to the tilt of the trap. Given the non-ideality of the input beam profile,

in particular the mildly asymmetric tails (see Section 2.3.2), as well as the slow drift in

optical alignment, some amount of this coupling is unavoidable. By reducing axial motions

with active feedback, sensitivity can be maintained while also reducing the cross-talk from
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Figure 2.18: Block diagram of the feedback loop to stabilize a trapped microsphere’s center
of mass motion. The x and y (radial) degrees of freedom only require damping and thus
derivative feedback, while the z (axial) degree of freedom is stabilized with proportional,
integral, and derivative gain. Both the measured power and retroreflected phase are used
to construct a feedback signal for the axial degree of freedom, as there is only one actuator
to control the trapping beam power. The H block assures that the two axial feedbacks
don’t “see” each other, by removing the effect of the z-phase feedback signal from the power
feedback error signal. The digital signal processing happens entirely within the FPGA.
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z into either or both of the radial directions.

In practice, only derivative feedback is applied to the radial directions (KP,i = KI,i = 0

for i ∈ {x, y}) in order to damp the resonant motion of a trapped microsphere, as well as

other fluctuations, while leaving the response at low frequency unfettered. For the axial

direction, all three PID terms are used to tightly constrain the microsphere to a particular

value of the retroreflected phase, and thus a fixed axial position. For each degree of freedom

and feedback loop, the values of the gain terms are determined empirically, and can differ

slightly between unique microspheres. In the radial directions, the value of KD,i is gradually

increased until the observed damping just barely exceeds the natural damping from the

∼1.5mbar of residual N2 inside the chamber, although slight adjustments may be made

after the chamber is pumped to high vacuum. In the axial direction, the values of all KI,i,

KP,i, and KD,i are individually increased (in that specific order) until the feedback loop

exhibits ringing, at which point they are reduced by a factor of 5− 10, with the intention of

maximizing the action of the feedback whilst avoiding instabilities.

With the feedback initialized as described, the microsphere can continue to be lowered

nearer to the focus by adjusting the setpoint of the z position feedback loop. By fully

maximizing the radial resonant frequencies, we can ensure the microsphere is trapped at the

focus, where the lateral extent of the trapping beam is minimized. Once the microsphere is

safely at the focus with feedback engaged, the chamber can opened to the vacuum system

and pumped down to base pressures of ∼1× 10−6mbar.

2.7.2 Microsphere Neutralization

Unlike many other micro- and nano-mechanical oscillators, an optically trapped microsphere

has no electrical connections with the surrounding environment, by virtue of the optical

suspension. During long-term measurements, changes in the overall charge state of the

microsphere can thus be completely neglected, and the electrical isolation allows for a direct

calibration of the system response to external electrostatic forces if the specific charge state

is known.

Why, you might ask, are we suddenly talking about the charge of a macroscopic object

composed of nominally neutral matter? Consider a candidate microsphere being ejected

from the bead dropper via piezoelectric excitation. The fantastically unpredictable and

poorly understood triboelectric effect [45] causes electrification of the microsphere during

this ejection, such that when trapped, the microsphere is not electrically neutral, but instead
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charged. Essentially, when two solids are in physical contact, there is some overlap between

the electron clouds of neighboring atoms at the boundary layer between the two solids. As

they are separated from one another, electrons can be redistributed between the overlapping

electron clouds, resulting in electrification (a change in overall charge state) of both objects.

If either or both objects are electrically isolated, such as an optically levitated microsphere,

then they can retain the charge acquired in this electrification process.

Initially after trapping a microsphere, the exact charge state, qMS, is unknown and can

range from roughly −2000 e to 2000 e, with e the elementary charge. The sign and approxi-

mate scale of qMS can be determined by applying an electric field to the charged microsphere

and observing the response. This is usually accomplished by biasing two opposing pyramidal

electrodes with oscillating voltages of the same frequency, but opposite sign, while keeping

the remaining four grounded. This induces a nominally uniform, but time-varying electric

field at the location of the trap, which applies a force to a charged microsphere within the

trap along one of the coordinate axes defined by the choice of electrodes. The amplitude of

the microsphere response to the oscillating field is indicative of the charge state, as under

the assumption of quasi-static equilibrium, the applied electrostatic force Fes,x, assumed to

be along the x direction for this example, is equal in magnitude to the optical restoring force

Fopt,x,

Fes,x(t) = qMSEx(t) = kopt,x∆x(t) = Fopt,x(t), (2.8)

where E(t) is the time-varying electric field at the location of the trap, and kopt,x is the

optical spring constant associated to microsphere displacements along the x direction. With

a finite element method, it is possible to compute the expected value of the electric field

Ex(t) for a given set of biases applied to the electrodes. On the other hand, despite the

existence of numerical methods to produce solutions to the equations of Mie scattering

theory [13], impurities, poorly understood bulk properties (e.g. index of refraction), non-

spherical geometries, and non-ideal optical modes (both beam profile and divergence), all

of which can fluctuate between successive microspheres and/or optical alignments, make it

difficult for these solutions to be consistent with observed behavior.

Instead, an empirical calibration is used to determine kopt, wherein the charge state is

modified and the change in response is measured. The charge state of a trapped particle

can be modulated with a variety of methods [24, 34, 46–49] (including corona discharge and
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the generation of localized plasmas near the particle), and we make use of the technique

where a charged microsphere is flashed with UV photons in order to eject electrons from

the microsphere with a photoelectric mechanism. This works exceedingly well when the

microsphere has a net negative charge, as it removes excess electrons. When the microsphere

has a net positive charge, and thus a deficiency of electrons, ejecting more electrons further

exacerbates the charge state. By introducing a gold-coated, silicon mechanical device in

proximity to the microsphere, it is possible to reverse the direction of charging. When

the surface of this device is in close proximity to the microsphere, flashes of UV photons

eject electrons from the gold surface (much more readily than from the silica microsphere),

many of which are then incident onto the microsphere changing the charge state from more

positive, to more negative.

The presence of this device perturbs the electric field quite significantly, so it must even-

tually be removed to accurately characterize the relation in Equation (2.8). For this reason,

if a trapped microsphere is found to have qMS > 0, the gold-coated device is introduced to

the trapping region, and UV photons are repeatedly flashed at the microsphere and device

until the overall charge state of the microsphere becomes negative, i.e. with an excess of

electrons. Then, the device is removed from the trapping region so that the electric field in

the vicinity of the trapped microsphere can be well-modeled with finite element analysis.

Now, with a negatively charged microsphere, the rate of UV flashes is slowed and the

amplitude of the microsphere response to an applied electric field is carefully characterized.

Then, if the flashing rate is sufficiently slow and the measurement of the response suffi-

ciently precise, it is possible to see individual electrons being ejected from the microsphere,

characterized by a discrete step in the response amplitude. Flashing can then be continued

until the microsphere reaches overall neutrality. A exemplary measurement of microsphere

response amplitude during this discharging procedure is shown in Figure 2.19, together with

a fit to a series of successive step functions. The step functions are all constrained to have a

step size that is an integer multiple of a single free parameter, i.e. the microsphere response

with a single excess electron. Often, steps are observed ranging in size from 1 e to 5 e, which

are all fit simultaneously, although only 1 e and 2 e steps are visible for the discharge of this

particular microsphere. The presence of multiple step sizes within a single discharge further

supports the supposition that the unit step size indeed corresponds to a single electron.

For example, if the unit step size determined from the fit was actually 2 e, it is difficult to

imagine a process that only ejects 2 e, 4 e, 6 e, etc., and not 3 e or 5 e.
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Figure 2.19: Amplitude of microsphere response to an applied electric field as a function of
time during discharge. The magnitude of the electric field remains constant throughout the
measurement, while flashes of UV photons induce discrete changes in the response amplitude.
The changes in amplitude are found to be integer multiples of a unit step, corresponding
to the expected response of the microsphere with a single electron charge. The response
amplitude here has been normalized into units of electrons, so that the discrete behavior
is exceedingly obvious. Additionally, the response amplitude has been fit to a series of
successive step functions, where the step sizes are constrained to be integer multiples of a
single free parameter: the single-electron response. In this way, it is possible to measure the
optical spring constant (along the direction of the applied field), and determine an empirical
calibration of the microsphere response to external forces.
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The neutral state of a microsphere can be confirmed by massively increasing the applied

electric field with high-voltage amplifiers, and looking for any residual response. In fact,

carefully characterizing the residual response of a nominally neutral microsphere can yield

constraints on the neutrality of matter, or the existence of milli-charged particles. Just such

an investigation was the focus of some work with a previous iteration of the apparatus,

completed prior to the beginning of the author’s time at Stanford [24]. Since that time,

work by colleagues has continued the investigation of the neutrality of matter making use

of neutral microspheres and large electric fields [].

Let Ri(n e) be the amplitude of the uncalibrated response in the i ∈ x, y, z direction

(where Ri is the result of the digital demodulation algorithm, as well as digital scaling), of

a microsphere with n excess electrons, subject to an oscillating electric field with amplitude

Ei and some frequency f0. Assuming the microsphere response is linear with the applied

force, the measured step size, Ri[n e]−Ri[(n−1)e], is equivalent to the applied electric field

multiplied by the fundamental charge, a fact that can be used to construct a calibration

constant, κi, for the measured data,

κi =
eEi

Ri[n e]−Ri[(n− 1)e]
with [κi] =

N

Arb
, (2.9)

where the step size is in arbitrary units, although the absolute scale and precision of these

arbitrary units are fixed by the signal-processing FPGA. This allows a direct calibration

of the measured microsphere response to applied force, a critical component when using a

trapped microsphere as a precision force sensor. The calibration method is direct, based

on a fundamental constant e, and only makes two basic assumptions: that the response is

linear for the applied forces used during calibration, which can be verified with a linearity

measurement as in Reference [27], and that the electric field is well modeled by the finite el-

ement analysis discussed in Section 2.3. The only technical concern is a robust measurement

of the applied voltages.

In contrast, one of the more common calibration techniques makes use of the thermal

forces applied by collisions between a trapped microsphere and residual gas particles within

the experimental chamber. Essentially, a moderate gas pressure is maintained within the

chamber, and the response spectrum of the microsphere is measured. The power spectral

density can then be fit to an analytic expression like Equation (1.9), so that the response

can be interpreted in physical units. However, this requires knowledge of the microsphere
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mass (often assumed from the manufacturer), knowledge of the microsphere shape (often

assumed to be a perfect sphere), the assumption that the microsphere is thermalized with

the gas, as well as the more fundamental assumption that a trapped microsphere behaves

as an ideal Brownian particle within a confining potential. Clearly, the calibration based on

the discharge of a microsphere is far superior.

2.7.3 Frequency Response of Trapped Microsphere

The discharge based calibration discussed in the previous section is powerful for calibrating

the response of a trapped microsphere at the single frequency used to generate the oscillating

electric field drive. However, from Chapter 1 we know that a microsphere confined to an

optical potential has a non-negligible frequency response, usually assumed to be that of a

damped harmonic oscillator. It is important to characterize this frequency response to fully

utilize the force sensing capabilities of an optically trapped microsphere. Simultaneously,

any cross-talk between imaging channels can be measured in a robust manner.

During the discharge, but prior to full neutralization, the UV flashing is ceased and the

electrodes are configured to generate a frequency comb electrostatic drive of the form,

Ej(t) = E0,j

N∑
n=1

sin (2πfnt+ ϕn) , (2.10)

where E0,j is the common amplitude of each component, {fn} is a set of nearly evenly-

spaced frequencies ranging from 1Hz to 600Hz chosen such that they lie exactly centered

within a single bin of a fast Fourier transform (where it is implied that the full integration

time is both fixed and known) and none are integer multiples of another within the set,

and ϕn is randomly sampled from a uniform distribution over the interval [0, 2π) in order

to avoid generating aggressive impulses from a superposition of in-phase sinusoids (consider

the Fourier series of a delta function). This allows the microsphere response to be probed

at multiple frequencies simultaneously.

A single electrode is driven while all others are kept grounded, generating an electric

field like that described in Equation. (2.10) along one of the three Cartesian coordinate

axes defined by the electrode cube. While this electric field is present, the response of the

microsphere along all three degrees of freedom is measured. This process is repeated for each

drive axis in order to fully characterize the response of a trapped microsphere to an external
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force. Let Fj(t) = qMSEj(t) be the applied force along axis j ∈ {x, y, z}, and let Ri(t) be

the response of the microsphere along axis i ∈ {x, y, z}. Writing their Fourier transforms as

F̃j(ω) and R̃i(ω), respectively, the frequency-dependent transfer function of the microsphere

response to external forces can be written as,

Hij(ω) =
R̃i(ω)

F̃j(ω)
, (2.11)

where Hij is clearly complex-valued, including both amplitude ratios and phase shifts for

each drive frequency present in the comb. An example of the amplitude (phase) of a typical

Hij(ω) is shown in Figure 2.20 (Figure 2.21. The on-diagonal components of this matrix,

where i = j, are often well-approximated by the frequency response of a damped harmonic

oscillator, and Figures 2.20 and 2.21 include the best-fit regressions of Equations (B.4)

and (B.4). In contrast, the off-diagonal components are not well-approximated by these

analytic functions, especially for drive frequencies near any of the resonances. For these

terms, a functional expression for calibration is constructed by interpolating the result over

the measured frequencies, and extrapolating at high and low frequencies with simple power

laws. Depending on the value of the feedback coefficients for the z direction, and how well

the nested feedback has been tuned, the i = j = z component sometimes requires the same

interpolation, as with strong feedback, this degree of freedom deviates from the expected

behavior of a damped harmonic oscillator.

The values of the resonant frequency and damping coefficients from the fits shown in

Figures 2.20 and 2.21 are enumerated in Table 2.1. For the x and y degrees of freedom, the

resonant frequency is fixed by the interaction between the trapping beam and microsphere

(dependent on the geometry of both, as well as the axial position of the microsphere within

the optical field), whereas the damping is tunable by changing the value of the derivative

gain, as discussed in Section 2.7. For the z degree of freedom, recall that near the focus

the resonant frequency is expected to approach zero, so the measured frequency response

is determined almost entirely by the active feedback, and can thus be tuned somewhat

arbitrarily. Usually, the feedback for z is tuned to be the strongest possible while maintaining

some degree of stability to large impulses, which have a tendency to induce ringing in systems

operating near unstable points.

During this measurement, the charge state of the microsphere is not well-known, as the

full discharge has not been performed, and thus the precise scale of the applied force is not
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Figure 2.20: Amplitude a typical complex-valued, frequency-dependent transfer function,
Hij , of an optically trapped microsphere. The amplitude scale is in units of [Arb/N], since
the applied force is known in physical units, whereas the x, y, and z variables are in some
units arbitrarily (but consistently) scaled by the FPGA. The rows don’t necessarily have the
same vertical extent, as each response axis can be scaled independently. The on-diagonal
components include a fit to the expected response of a damped harmonic oscillator.
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Figure 2.21: Phase of a typical complex-valued, frequency-dependent transfer function, Hij ,
of an optically trapped microsphere. The relative phase of the off-diagonal response has
not been ‘unwrapped’ for ease of representation, although an interpolation (discussed in the
text) would require this. The on-diagonal components include a fit to the expected response
of a damped harmonic oscillator.
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Table 2.1: Properties of the center of mass degrees of freedom, derived from fitting the
amplitude and phase of a particular trapped microsphere’s response to external forces, seen
in Figures 2.20 and 2.21. The coefficients in the equation of motion (Equation (B.2)) are
in units of rad/s, whereas the coefficients are reported in units of Hz: f0 = ω0/2π and
Γ = γ/2π. The damping coefficients for x and y are determined almost entirely by the
derivative gain terms in the feedback, whereas both the resonant frequency and damping for
z are set by the feedback. Integral gain terms primarily affect stability below the frequencies
used in the measurement in Figures 2.20 and 2.21.

Axis Resonant Frequency f0 [Hz] Damping Coefficient Γ [Hz]
x 410.3 8.6
y 394.7 5.3
z 177.1 144.6

well-known. Additionally, given the relatively small amplitude of each component of the

frequency comb, a large charge (qMS ≥ 50 e) is usually maintained during this measurement

so that there is sufficient response amplitude to adequately characterize the full frequency

dependence of the microsphere in a reasonable amount of time (measurement uncertainty

scales as 1/
√
T , with T in the integration time, but signal scales as qMS). The discharge step

size κi from Equation (2.9) is then used to estimate the charge on the microsphere during

the frequency response measurement,

qMS =
Hxx(ω = 2πf0)

κx
, (2.12)

where f0 is the frequency of the applied electric field during the discharge measurement

(usually 41.0Hz), and where the single axis, x, that is used during the discharge measurement

has been specified. With qMS known during the frequency response measurement, Hij(ω)

can be properly calibrated (see Equation (2.11)). Then, for any given measurement of the

microsphere response, Ri(t), along all axes i, the applied force along the geometric axes

defined by the electrode cube can be reconstructed as

Fj(t) = F−1
{
H−1

ij (ω)F [Ri(t)]
}
, (2.13)

where F is the Fourier transform operator. Although the formalism has been shown for con-

tinuous signals, it is implied that all measurements and drive signals are discretely sampled

and thus the Fourier transform operator is implemented with the Fast Fourier Transform



2.7. FEEDBACK AND CALIBRATION 85

(FFT) algorithm, usually limited to positive frequencies, since the signal is known to be real-

valued. The details of the discrete mathematics are left to the reader. If they so wish, an

interested reader may attempt navigating to a Python code repository designed exactly for

these measurements, although they venture at their own risk into a sea of poorly commented,

cryptically structured, spaghetti code [50].
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Chapter 3

Three-dimensional

Force-field Microscopy

The content of this chapter has been adapted from Reference [27], for which the author was

a primary contributor. Apparatus and generic experimental method descriptions have been

removed, appealing to Chapter 2 of this thesis instead.

3.1 Introduction

The ability to make measurements at ever smaller length scales has had profound implica-

tions for both fundamental science and technology. In particular, atomic force microscopy

has enabled the measurement and manipulation of surfaces at atomic length scales. Tra-

ditionally, atomic force microscopes have sensed the interaction of a tip, suspended by a

cantilever, with a surface, by measuring the displacements of the cantilever in the direction

perpendicular to its surface [51]. The mechanical suspension of the force-sensing element

limits electrical, thermal, and mechanical isolation from the outside world.

Here we present a technique for measuring three-dimensional forces over a three-dimensional

volume by levitating a 4.7 µm diameter dielectric microsphere at the focus of a Gaussian

laser beam, with a 10 µm minimum distance between the center of the microsphere and an-

other object. This results in the full mapping of a vector field anywhere in space and close

to mechanical objects. The optical levitation enables three important features: the absence

of dissipation associated with the cantilever support allows measurements with substantially

lower force noise at room temperature; the electric isolation provided by the optical support

87
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makes electrostatic measurements at fixed charge possible; and force vectors measured in

three dimensions are characterized by similar spring constants in each of the three trapping

degrees of freedom.

Since the pioneering work of Ashkin [1, 7, 9], a number of experiments with optically

levitated microspheres have been demonstrated, especially in recent years [21, 24–26, 31–33,

52–66]. Some authors have proposed short-range force detection experiments using their op-

tically levitated microspheres [46, 67], but only a few have actually positioned free-standing

objects micrometers away from a trapped microsphere [25, 66, 68] or other mesoscopic ob-

jects. Positioning a Si beam or other attractor close to a trapped microsphere and measuring

its effect on the trapped microsphere are crucial for any short-range force-sensing application.

As a demonstration of this technique, we measure the electrostatic forces between a

charged microsphere and an Au-coated Si beam (ACSB) structure. A force calibration,

obtained by charging the microsphere with a unity charge and applying an external electric

field (see Chapter 2), allows us to precisely determine the electric field due to a overall bias

on the ACSB as well as infer the distribution of “patch potentials” on the Au surface in

absolute terms.

3.2 Experimental Setup

Microspheres are prepared within the optical trap as outlined in Chapter 2. For all of the

measurements detailed within this chapter, the experimental chamber is maintained at the

system base pressure. Feedback is tuned for minimal damping in the x and y (radial) degrees

of freedom, while strong proportional, integral, and derivative gain is used for the z (axial)

degree of freedom. The system’s response to known electrostatic forces is calibrated with

the feedback active, and at the system base pressure.

The ACSB is designed to have contrast in density (and baryon number) for a future

experiment detailed in Chapter 8. This is achieved by alternating Au and Si fingers with

25 µm distance between the centers of contiguous fingers. A 3 µm thick Si fence bridges all Si

fingers together, so that the Au fingers are entirely surrounded by Si. A 200 nm Au coating

is then applied to all surfaces. A more complete description of the ACSB is provided in

Reference [69] and Appendix G, while, for the purpose of the work described here, only this

external layer of Au is relevant, given that only electrostatic forces are applied. The ACSB

is 10 µm thick to minimize its interference with the tails of the Gaussian trapping beam.
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Figure 3.1: Trap region: A drawing of the trap region is shown in the left panel, illustrating
the 2-mm-diameter holes in the Au-coated pyramidal shielding electrodes through which
the ACSB and the trapping beam are brought in and extracted. The trapping light is
represented by the red conical feature. The panel to the right illustrates a detail of the end
of the ACSB and trapped microsphere, along with the coordinate frame used in the data
analysis. A separate arrow shows the direction of Earth’s gravity.

More work on both shaping of the trapping beam and the microsphere imaging system are

likely to make thicker field-generating components possible; nevertheless, constraints of this

type are likely to remain the main limitation of this new technique.

After trap loading and force calibration, the ACSB is brought close to the trap region

through one of the holes in the pyramidal electrodes, as shown in Figure 3.1, where the

coordinate system employed here is defined. Sufficient clearance is provided for the full

80 µm range of the translation stage in the y and z directions. Force measurements are

carried out in three configurations: to evaluate the noise and linearity of the measurement,

to demonstrate the ability of the technique to map the field produced by an external bias

on the ACSB, and to map the field produced by patch potentials on the ACSB surface. In

all measurements involving the ACSB, the trap is held at a fixed location, while the ACSB

is displaced and/or actively driven.

For the electric field mapping discussed, the microsphere is charged to approximately q ≈
−400e, with an excess of electrons. This large charge is intended to overwhelm possible multi-

polar (mainly dipolar) effects, clearly visible for neutral microspheres. A dipole moment of

d ≈ 500e× 5 µm (aligned for maximal coupling to the field gradient) produces a force that

is an order of magnitude smaller than the force on a charge of q ≈ 500e in the electric field
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configuration employed here (discussed below).

The single-beam configuration of the apparatus is ideal for the application described

here, as it allows optimal access to the microsphere from all directions in the horizontal

plane. The current noise level on the motion of the microspheres is dominated by effects [26]

other than the residual vacuum, which is limited at ∼10−6 mbar by the out-gassing of a

number of translation stages.

3.3 Sensor linearity and noise

There are two features that define the performance of a force sensor: noise and linearity.

The linearity of the force measurement is obtained, along the three degrees of freedom, by

the same process used for the force calibration, scanning a 41-Hz AC drive signal with the

shielding electrodes, from (0±0.1) to 500 fN. The linearity has frequency dependence, which

was measured as part of the calibration, as discussed in Sec. II. The result, for forces along

the x axis, is shown in Figure 3.2, along with the residuals to a perfectly linear behavior.

At driving forces over 300 fN, a ∼10% non-linearity is observed.

The noise is characterized by collecting data with the ACSB placed over a three-dimensional

grid of positions in front of a trapped and charged microsphere. The six trapping electrodes

are nominally grounded and the ACSB is driven with a single-frequency AC voltage at

41 Hz. The response of the microsphere at a frequency far from this applied tone is then

examined. Similar noise conditions are observed when the ACSB is nominally grounded.

The resulting force micrographs are shown in Figure 3.3 for 10-s integrations at each po-

sition and with a single microsphere. The root-mean-square (RMS) noise forces over the

whole 80 × 80 × 80 µm3 measurement volume are 5.5, 17.2, and 8.2 aN, for the x, y, and

z directions, respectively. Histograms of the noise over the whole measurement volume are

plotted in Figure 3.4. The anisotropy in the measured noise may be the result of residual

astigmatism of the trapping beam, inconsistencies in x and y feedback, or, possibly, effects

related to the finite geometry of the ACSB [70, 71]. This force noise is comparable to a cryo-

genic Si cantilever [72, 73], but is obtained at room temperature and on all three degrees of

freedom simultaneously. This noise performance, along with the linearity up to ∼10−13 N,

enables force measurements spanning over four orders of magnitude in amplitude.
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Figure 3.2: Linearity of the force sensor in the x direction, with residuals from perfectly linear
behavior. Data are collected for a 41-Hz drive signal applied with a shielding electrode. The
other two degrees of freedom have comparable linearity.
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Figure 3.3: Force noise micrographs with a charged microsphere, represented with respect
to a stationary ACSB at various relative positions. Practically, changes in the relative
position are produced by displacing the ACSB, yet for ease of representation, the figure
shows the ACSB as stationary. The force vectors represent the microsphere response at a
frequency far from a single-frequency AC voltage drive applied to the ACSB during these
measurements. For the data in the top (bottom) panel, the horizontal component of the
force vector represents Fx, the force in the x direction (Fy, the force in the y direction),
while the z component of the vector is always the force in the z direction. In both cases,
force vectors measured at five y positions (with a different color indicating each y position
shown in the legend) in a regularly spaced grid ranging from −40 to 40 µmm are plotted at
each (x, z) location.
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Figure 3.4: From top to bottom: histograms of the measured force noise in the x, y, and z
directions at different grid locations. Also shown are the fits to normal distributions. The
low noise and high linearity of the apparatus enable measurements with a dynamic range of
over four orders of magnitude.
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3.4 Electric field from an overall bias voltage

The overall electric field from a bias voltage applied to the ACSB is measured. This pro-

cedure is used here to validate the technique, but also to register the relative position of

the ACSB to the trap and its orientation in space, with a fit to a model produced by FEA.

In a new version of the trap, currently under construction, high-quality metrology will be

possible through auxiliary optics, something only available in a rudimentary fashion in the

current system.

The three-dimensional electric field is mapped over a 10×10×10 grid of points, spanning

the full 80 µm of closed-loop travel in the translation stage, along each of its three orthogonal

axes. The relative displacement between points in the three-dimensional scan is known with

an uncertainty of ∼10 nm, set by the accuracy of the translation stage used. To perform the

measurement at each point on this grid, the microsphere is driven for 10 s by an AC voltage

on the ACSB at 41Hz, with a 100mV peak-peak amplitude. The force at each grid point

is represented by a three-dimensional vector. A slice of this vector field along an xz plane

at y = 0 (centered along the y axis) is shown in Figure 3.5, together with the results of the

FEA. Shown are both Fx and Fz (top) and Fy and Fz (bottom) in the same xz plane.

The data are fit to the FEA model by constructing a least-squared cost function from the

difference between them, normalized by the error in the data, and summed over all 1000 grid

locations. In the minimization, the charge of the microsphere, q is allowed to float (which is

equivalent to applying an overall scaling of the
#–

E field produced by ACSB), as well as three

translations of the coordinates reported by the stage, and six independent rotation angles.

Three of these angles floated in the fit represent angular misalignment between the axes of

the translation stage and the axes of the trap, which are used to construct a rotation matrix

applied to the measurement grid points. The remaining three angles account for a possible

angular misalignment of the ACSB itself to the axes of the translation stage, and are used

to construct a rotation matrix applied to the measured vector field. Constant offsets in the

measured force, as would arise from contact potentials, are excluded since an oscillating

electric field is applied and the amplitude and phase of the microsphere’s response at the

oscillation frequency is measured.

With this procedure, we find q = −459e (consistent with the estimate made during the

charging process), and a closest separation of the ACSB face of 15 µm from the center of

the microsphere, centered in the z-axis with an uncertainty 2.5 µm. The coordinate axes of
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Figure 3.5: Vector field plots of (Fx, Fz), top, and (Fy, Fz), bottom, in an xz plane of relative
positions. As before, changes in the relative position are produced by displacing the ACSB,
yet for ease of representation, the figure shows the ACSB as stationary. The black arrows
represent the measured force, while the red arrows represent the best fit from the FEA of
the

#–

E field produced by an ACSB with the same overall bias voltage as in the experiment.
A few grid points are missing, due to data corruption introduced by the data acquisition
instrumentation.
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the ACSB are found to be tilted relative to the coordinate axes of the translation stage by

no more than ±5◦ for all three rotation angles, while the coordinate axes of the translation

stage are tilted relative to the physical axes of the trap by no more than ±2◦ for all three

rotation angles.

Residual deviations from the best-fit FEA, particularly apparent at short separations,

are likely the result of non-uniformity of the voltage on the ACSB, as our FEA assumes

a perfect conductor with ideal geometry. Small dielectric particles (e.g., silica dust) on

the surface of the ACSB, and/or metallic grains in the Au coating, may contribute to the

small discrepancies observed at shorter distances [74, 75]. Permanent dipole moments in

the microsphere, estimated from Reference [25], may produce forces more than an order of

magnitude smaller than the residual force from the fit described above. Similarly, induced

dipoles, estimated from the microsphere index of refraction [76] and the contact potential

on the ACSB assumed to be < 100 mV, may produce a force more than two orders of

magnitude smaller than the residuals.

The closest approach of the ACSB, as described above, is 15 µm for the data set shown

in Figure 3.5. Force sensing at smaller distances, down to ∼8 µm, is possible and has been

achieved with this technique, but with an increase of the system noise for which a satisfactory

explanation has not been found.

3.5 Patch potential measurements

Patch potentials on the surface of the 200 nm thick evaporated Au surface of the ACSB

create an electric field which can be measured as a force on a charged microsphere. To

perform this measurement, the ACSB is mechanically driven sinusoidally along the y axis

with the translation stage, over a regular grid of x positions (separations), and z positions.

At each point within the xz grid,
#–

F (t) and y(t) are measured, so that the three-dimensional

force field
#–

F (x, y, z) can be obtained. The relative registration of the microsphere with

respect to the ACSB in terms of the three translations and six rotations is taken from the

fit to the case of the biased ACSB, discussed in the previous section. The three-dimensional

electric field can then be extracted as
#–

E(x, y, z) =
#–

F (x, y, z)/q, where q is the charge of the

microsphere, also determined in the previous section.

The electric field due to patch potentials on the ACSB is numerically modeled following

results obtained by Kelvin probe atomic force microscopy [75, 78]. Those authors define
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Figure 3.6: The RMS of the x and y components of the measured force on the microsphere in
the plane of the ACSB, as a function of separation from the ACSB. The data are compared
to a model described in the text. The bands represents the standard deviation of the model,
using different random implementations of the patch potentials. The fit of Fx,RMS (Fy,RMS)
implies voltage patches of size ∼0.8 µm (∼0.7 µm), assuming Vpatch = 100 mV [77, 78].
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a voltage autocorrelation function, R( #–s ) =
∫∫

d2 #–s ′V ( #–s )V ( #–s ′ + #–s ), where #–s and #–s ′ are

positions on the surface. They then find that R( #–s ) is approximately constant for short

length scales, followed by a sharp knee at a length scale consistent with the expected patch

size, lpatch. As an approximation to this autocorrelation function, a toy model is constructed

with triangular patches measuring lpatch on a side, with voltages randomly sampled from a

normal distribution, N(0, Vpatch). FEA is used to determine the electric field due to these

patches (as the geometry and boundary conditions do not permit an analytic solution),

which is then compared to measured data. Since the patches and resulting electric fields

are random, many realizations of patches are simulated in order to sample the mean and

variance of the RMS force, FRMS.

Measurements of FRMS along x and y for different separations x are shown in Figure 3.6.

The RMS is computed over all grid points along the y axis, at z = 0. In the figure, the data

are fit to the results of the FEA model described above using a least-squared cost function,

with a constant added variance to account for noise. Misalignments between the physical

axes of the ACSB and the axes of the driven motion, together with an overall contact

potential on the ACSB, would produce both a constant offset in
#–

F (t), as well as a term at

the ACSB’s driving frequency. Patch potentials with length scale lpatch ≤ 40 µm would only

produce higher harmonics of the ACSB’s driving frequency, as its maximum displacement is

(∆y)max = 80 µm. Thus, when computing
#–

F (y) from
#–

F (t) and y(t) via Fourier techniques,

the dc and fundamental terms of the ACSB’s driving frequency were set to zero in the FFT

of
#–

F (t). At distances much greater than the patch size, the RMS
#–

E field is proportional to

the product of the patch length scale, lpatch, and the RMS patch voltage, Vpatch. Although

the microsphere is not close enough to the ACSB to resolve the underlying patches, the

patch length-scale voltage product can be extracted directly.

To compare to other measurements, we assume Vpatch = 100 mV [77, 78] and obtain lpatch.

The fit of the x RMS (y RMS) force implies lpatch = 0.8 µm (lpatch = 0.7 µm). The length

scales inferred from the fit are somewhat larger than the ∼200 nm grain size expected for a

200 nm thick evaporated Au film [77, 78]. Others have observed sample contamination by

dielectric adsorbates (such as silica dust) that become embedded in metallic surfaces, which

can collect charge and affect measurements of patch potentials [74, 75]. Finite electrode

geometry may also play a role [71].
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3.6 Conclusion

We have demonstrated a technique capable of mapping, with sensitivity competitive to

that of cryogenic atomic force microscope, a three-dimensional vector field over a volume

of ∼106 µm3 in free space. The center of this sensor, a 4.7µm diameter optically levitated

dielectric microsphere, can be brought as close as 10 µm to a metallic surface, while per-

forming the measurement. This instrument is used to map the patch potentials on an Au

surface.

While this result is exclusively sensitive to electric fields, three-dimensional mapping of

other physical fields appears possible. Magnetized microspheres are commercially available,

and possibly neutral microspheres or microrods with large electric dipole moments could be

used with enhanced sensitivity to electric field gradients. Our group is actively pursuing

the technique to search for new long-range interaction coupling to mass or other intrinsic

properties of matter at the micrometer scale.
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Chapter 4

Direct Mass

and Radius Measurements

of Individual Microspheres

The content of this chapter has been adapted from Reference [19], for which the author was

a primary contributor. Apparatus and generic experimental method descriptions have been

removed, appealing to Chapter 2 of this thesis instead, while some other sections have been

expanded for completeness.

4.1 Introduction

Optical trapping and manipulation of micron-sized dielectric particles in vacuum has been

applied to optomechanics [1, 7, 21, 53, 59, 65] and cavity cooling [55, 57, 62], fundamental

forces and interactions [24, 25, 58, 60, 64, 67, 79], quantum mechanics [80, 81], quantum

information [32], and surface science [27]. In many of these applications, knowing the size,

mass, and other characteristics of the trapped particles is critical to drawing conclusions

about moments of inertia, optical spring constants, and force sensitivity.

We present a technique to measure the mass of individually trapped microspheres, by

balancing a known electrostatic force, the optical levitation force, and Earth’s gravity. The

electrostatic force is extrapolated to the condition of no optical power to determine the

gravitational force on the microsphere, and thus infer its mass. This measurement requires

101
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fewer assumptions than other techniques [48, 82] and is found to be independent of envi-

ronmental conditions. The method is applicable to particles of any size, in any scattering

regime, provided that a component of the optical power opposes gravity, and the direction

of the gravitational field can be controlled. The technique is demonstrated for two distinct

sizes of microsphere within the same optical trap.

Similar electrodynamic balances have been used to stably trap and levitate aerosol par-

ticles [83–87] as a platform for studying such things as droplet evaporation. It is possible to

estimate charge-to-mass ratios for micron-sized aerosol particles thus levitated, but practical

constraints severely limit both the precision and accuracy of these estimations, as discussed

in References [86, 87].

It may be possible to derive a direct relation between the optical power required to levi-

tate a microsphere at the center of the trap and the mass of the microsphere using numerical

methods to develop solutions to the wave equations of Mie scattering theory [13], as was

shown in Chapter 1 for an ideal Gaussian beam and a perfectly homogeneous and spherical

microsphere. However, performing the same calculating with quantitatively accurate results

(beyond order of magnitude) requires a detailed understanding of the microsphere radius,

non-sphericity, and index of refraction, as well as a full description of the optical potential

in three dimensions. The technique described here bypasses these complications and their

associated systematics, resulting in increased accuracy.

A subset of microspheres are also individually collected from the optical trap with use of

a mechanical probe and imaged via scanning electron microscopy (SEM) to determine their

radii. Knowing both the mass and the radius of individual microspheres, their density can

be calculated. The radii determined from SEM images of those specific microspheres are

compared with the radii determined from SEM images of large populations of approximately

1000 microspheres that have never been in the optical trap.

4.2 Experimental Setup

The optical trap used here is described in Chapter 2. The critical features of the apparatus

for the measurement itself are the electrodes above and below the trap and the power mon-

itoring photodiode. Active stabilizing feedback is used for all measurements, and thus the

standard imaging system is required, although the x, y, and z responses of the microsphere
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are not part of the final measurement. Importantly, the axial degree of freedom of the mi-

crosphere, stabilized by modulating the power of the trapping beam with an acousto-optic

modulator, is held at a fixed position by strong proportional and integral feedback terms.

The masses and radii of two types of silica microspheres are measured, both of which

produced via Stöber process [16], but of different sizes and sourced from two distinct man-

ufacturers: r = 2.35 µm from Bangs Laboratories [76], and r = 3.76 µm from microParticles

GmbH [88]. The two electrodes directly above and below a trapped microsphere are used to

generate a uniform, slowly varying electric field at the trap location, exerting an axial force

on a charged microsphere. The relation between the applied voltage and the electric field

within the trapping region is modeled by finite-element analysis, with an uncertainty that

is much smaller than any other systematic uncertainty.

After measuring their mass with the technique to be described, three microspheres are

collected on the end of a polymer-coated silicon beam, described in References [27, 69],

where they remain attached via van der Waals forces. Individual microspheres are addressed

to particular locations, recognizable from features on the silicon beam. The silicon beam

is then removed from the chamber, and the three microspheres are imaged by SEM to

determine their individual radii. A population of microspheres of the same variety and

lot as those used in the trap are also measured by SEM. For this purpose, a monolayer

of microspheres is spread onto a silicon wafer and subsequently imaged by SEM. Various

diffraction gratings [89] are used to calibrate the instrument at each of the magnifications.

4.3 Electrostatic Co-Levitation

Once a constant, known charge is obtained for a trapped microsphere, its axial position is

fixed near the focus of the optical trap using the feedback. The slowly varying (0.5 Hz)

electric field is applied in the vertical direction, while the power of the trapping beam

injected into the chamber, controlled by the feedback, is monitored with a beam pick-off

and a photodiode. As the applied electrostatic force increases, the axial feedback reduces the

optical power required to maintain a net force of zero, counteracting gravity. The electric

field can then be extrapolated to zero optical power, which allows a determination of the

microsphere mass. This process is shown schematically in Figure 4.1. The case of zero

optical power cannot be directly measured, as there is a minimum power necessary both

to constrain the microsphere to the optical axis, and to generate sufficient back-reflected
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Figure 4.1: Illustration of the measurement technique. A charged microsphere is trapped
by a Gaussian laser beam and held at fixed axial position with active feedback. A slowly
varying electric field is applied, depicted with a black arrow. The active feedback reduces
the optical power, indicated by the intensity of the trapping beam, such that the sum of
the optical and electrostatic levitation forces opposing gravity is constant. The relation
between optical power and applied field is then extrapolated to zero optical power, allowing
a determination of mass from the implied electrostatic levitation field and the known charge.
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light to measure the axial position via the methods described in References [26, 27]. The

technique described is applicable only to single-beam traps [26], as its extension to systems

with more than one beam requires care to account for the contributions of auxiliary beams

to the total optical levitation force.

The equilibrium of axial forces Fz is expressed as,

∑
Fz = qE(t)−mg + Fopt,z(t) = 0, (4.1)

where q and m are the charge and mass of the microsphere, respectively, g = 9.806 m/s2 is

the local gravitational field strength [90], Fopt,z(t) is the optical levitation force, assumed to

be proportional to the trapping beam power, and E(t) is the applied electric field strength.

For each microsphere and charge-state combination, the slowly varying electric field and

power are measured at least 50 times, each with a 50-s integration. Exemplary datasets for

both the r = 2.35 µm [76] and the r = 3.76 µm [88] microspheres are shown in Figure 4.2,

with the calculated masses from the extrapolation to zero optical power.

The extrapolation of this linear regression is performed over ≤ 1 order of magnitude

and relies on only a few simple assumptions: firstly, the superposition principle, whereby

the total force on the microsphere is the sum of gravity, the optical levitation force, and

the electrostatic force, all of which are applied independently to the microsphere; secondly,

proportionality between radiation pressure (the optical force) and photon flux, and thus the

optical power [4]; and finally, the linearity of the photodetection system, which we operate

at a factor of 1000 below the manufacturer’s reported saturation level [91].

The mass measurement is performed on 13 microspheres, of the 2.35 µm radius vari-

ety [76], in various charge states around |q| = 20e, with both signs of charge, as well as in

two vacuum-pressure regimes: trapping pressure, approximately 1mbar, and chamber base

pressure, 10−5 mbar or less. The use of different pressures tests whether microsphere mass

is lost due to heating, as reported for larger microspheres in Reference [63]. Cooling via

residual gas decreases significantly with decreasing pressure, while absorption and scatter-

ing of laser light, the dominant heating mechanisms, remain constant. The results of mass

measurements for all experimental conditions are shown in Figure 4.3, while the results from

the final three microspheres later imaged by SEM are provided in Table 4.1.

To collect the final three microspheres, the polymer-coated silicon beam is rapidly in-

serted between the trapping laser and the microsphere, allowing the microsphere to fall under
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Figure 4.2: (upper) Normalized optical power versus applied electric field for 100 50-s in-
tegrations with a single, 2.35 µm radius microsphere [76]. The extrapolation is performed
separately for each integration. The mean of all extrapolations is shown with a dashed black
line. The inset shows the distribution of the 100 extrapolated masses. (lower) The same
style of measurement for 50 50-s integrations with a single, 3.76 µm radius microsphere [88],
demonstrating broader applicability of the measurement technique.
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the influence of gravity. Each distinct microsphere can be associated with the respective

mass measurement given its position relative to the internal structure of the silicon beam.

Van der Waals forces, enhanced by the polymer, serve to keep the microspheres attached,

whereas doped silicon and gold were both found to produce insufficient adhesion during

previous attempts. The fluorocarbon polymer coating is made with a plasma-deposition

technique inherent to the Bosch process [92], with use of C4F8 and SF6 gases in a 1.5-kW

inductively coupled plasma.

The same rigorous data collection was not performed with the r = 3.76 µm micro-

spheres, as these were only stably trapped following the initial publication of this work in

Reference [19]. For this variety of microsphere, mass measurements of only two microspheres

were made, both with a negative overall charge, and with vacuum maintained at the cham-

ber base pressure.1 The extrapolated masses for these two measurements are also included

in Table 4.1. Neither of the two larger microspheres were collected for dedicated imaging,

instead making use of SEM micrographs of a collection of microspheres sourced from the

same batch in order to determine their radius.

Table 4.1: Microsphere masses, m, averaged over all experimental conditions; radii, r,
averaged from two distinct high magnification images of the individual spheres (for the
r = 2.35 µm) or the population average (for the r = 3.76 µm); and the derived density, ρ,
for the three microspheres caught on the silicon beam, as well the two microspheres of the
larger variety. All measurements include statistical and systematic uncertainties, and the
relative contributions are shown explicitly for the measured masses. Numbers 4 and 5 were
not individually imaged with SEM, and have significantly different statistical uncertainties
due to an improvement in the electrostatic drive system.

Microsphere m (pg) r (µm) ρ (g/cm3)

1 84.0± 0.8 (stat.)± 1.5 (sys.) 2.348± 0.038 1.550± 0.080

2 83.9± 1.1 (stat.)± 1.5 (sys.) 2.345± 0.037 1.554± 0.079

3 85.5± 0.2 (stat.)± 1.5 (sys.) 2.355± 0.038 1.562± 0.081

4 427± 20 (stat.)± 8 (sys.) 3.76± 0.09a 1.92± 0.16

5 413.7± 2.5 (stat.)± 7 (sys.) - 1.86± 0.13

aDerived from the population measurements to be discussed in the following section, not from an indi-
vidual measurement of the microsphere in question

1The apparatus was optimally configured for measurements of the rotational dynamics of the smaller
r = 2.35µm, as will be discussed in Chapter 5.
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Figure 4.3: Measured microsphere masses in chronological order are shown in the top panel.
Unfilled markers indicate a low-vacuum environment, P = 1.5mbar, while filled markers
indicate high-vacuum environment, P = 10−6 − 10−5 mbar. Black markers correspond
to measurements with a negatively charged microsphere, while red markers correspond to
measurements with a positively charged microsphere. Different microspheres are separated
by vertical dashed lines. The mean mass for each microsphere weighted over all experimental
conditions is shown in the bottom panel. The blue data points with cross-shaped markers
indicate the three microspheres imaged by SEM following their mass measurement.
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Figure 4.4: SEM images of the three microspheres collected on the silicon beam, at ×2500
magnification. The left inset shows one microsphere at ×35000 magnification, overlaid with
the best-fit ellipse, and the right inset shows the (1.000± 0.005)µm diffraction grating [89],
also seen at ×35000 magnification. The diffraction grating serves as a calibration length
scale for the high-magnification images of individual microspheres.

4.4 Radius Measurements from SEM

For the SEM measurements, the silicon beam with three microspheres is first sputter-coated

with (100 ± 50) nm of a Au/Pd alloy to prevent charging and the resulting microsphere

ejection from the silicon beam. Charging effects from the scanning electron microscope are

significantly exacerbated by the non-conductive polymer, necessitating the relatively thick

metal coating. A diffraction grating with a pitch of (1.000±0.005) µm [89] is used to calibrate

the SEM images of individual microspheres at high magnification, as seen in Figure 4.4.

The microsphere diameter is first determined in terms of raw pixels. This is done by

edge detection and contour tracing to outline the microspheres. The contour is then fit with

an ellipse to account for real ellipticity in the microspheres, as well as astigmatism in the
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electron microscope. The radius is taken as the average of the semi-major and semi-minor

axes, which differ by less than 1%. A systematic uncertainty of ±1 pixel in the determination

of the semi-major and semi-minor axes is included.

At the same level of magnification, images of the calibration grating are used for conver-

sion from pixels to physical distances. This is done by locating the centroids of the grating’s

repeated structure in the image, and averaging the pixel distance between neighboring cen-

troids across the entire image. The ratio of grating pitch in microns to observed grating

pitch in pixels serves to calibrate the images. The (100±50) nm thickness of the conductive

coating is subtracted from the final radius.

To characterize the distribution of radii by SEM, sparse monolayers of r = 2.35 µm

microspheres are prepared on two heavily doped silicon wafers. Charging effects are reduced

without the polymer, so a conductive coating is not strictly necessary. However, the two

wafers are imaged with and without a conductive coating to study possible systematics. The

coated wafer is sputtered with (40± 10) nm of the same Au/Pd alloy mentioned previously.

Each wafer includes a diffraction grating with (9.98 ± 0.02) µm pitch [89] to serve as a

length calibration. Images of approximately 1000 distinct microspheres, both conductively

coated and uncoated, are collected at a range of magnifications, together with images of

the calibration grating. The same ellipse identification and calibration procedures used for

images of individual microspheres are used to characterize the large microsphere populations.

The radii of the final three r = 2.35 µm microspheres measured are compared with the

distribution of radii from the microsphere population measurements, shown in the upper

panel of Figure 4.5. The conductive coating reduces the apparent size of the microspheres

by approximately 20 nm after accounting for the coating thickness. This may be the result

of charging of the uncoated microspheres.

A similar procedure is used to characterize the distribution of radii of r = 3.76 µm

microspheres, although the sampled population is 127 microspheres instead of ∼1000. The

distribution is shown in the lower panel of Figure 4.5. The microspheres are left uncoated, as

a more advanced scanning electron microscope with magnetically-enhanced high resolution

imaging, electron beam deceleration, and segmented backscatter detectors allows for robust

imaging of dielectrics with limited surface charging. Images and thus radii are calibrated

with the (1.000± 0.005)µm pitch diffraction grating.

It should be noted that the electron microscope has a built-in length scale for calibrating

from pixels to physical distances at a particular magnification, displayed as a horizontal bar
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Figure 4.5: (upper) Distributions of microsphere radii measured by SEM for both conduc-
tively coated and uncoated microspheres of the smaller variety are shown in the top panel.
Gaussian fits yield central values of rAu/Pd = (2.35± 0.04) µm and rNC = (2.37± 0.04) µm
for the conductively coated and uncoated microspheres, respectively. Each distribution is
generated from approximately 1000 distinct microspheres. Individual radius measurements
from analysis of the microspheres seen in Figure 4.4 are shown in the panel immediately
below. (lower) Distributions of microsphere radii uncoated microspheres of the larger va-
riety, generated from only 127 distinct microspheres. A Gaussian fit yields a central value
of rAu/Pd = (3.76 ± 0.09) µm. Individual microspheres of this size were not independently
imaged, and thus only the population measurement is shown.
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in the exported image. For both variety of SEM measurements (the individual and the large

population) with the r = 2.35 µm microspheres, the built in length scale was found to differ

from the length scale derived from the calibration grating by less than 0.1%, suggesting

the calibration grating was likely unnecessary given the magnitude of other systematic un-

certainties. Further generic SEM imaging of different microspheres can then be performed

without requiring a calibration. Regardless, all measurements shown here make use of either

the (1.000± 0.005)µm or (9.98± 0.02) µm diffraction gratings.

4.5 Discussion

The mass measurement technique described avoids a number of systematic uncertainties

inherent to derivations of the microsphere mass from optical properties and the trapping

potential [13]. Importantly, the extrapolation to zero trapping-beam power is sensitive only

to an offset in the power measurement, so an exact calibration of power is also unnecessary.

Indeed, for the measurements reported here, the optical power is normalized to an arbitrary

value of 1, as seen in Figure 4.2. The only requirement for the measurement is that the

photodiode responds linearly to the incident optical power, which is easily achieved with a

device operating well below saturation.

Fluctuations in the mass measurement over the 50 or more distinct 50-s integrations for

a set of experimental conditions are normally distributed with a standard deviation on the

order of 0.5 pg for the r = 2.35 µm microspheres and 2.5 pg for the r = 3.78 µm, as seen in

the insets in Figure 4.2. However, the total uncertainty of the measurement is dominated by

common systematic effects that are enumerated in Table 4.2. Each effect listed is interpreted

as an uncertainty on the applied electric field, the measured optical power, or the assumed

value of g.

From Equation (4.1), these relative uncertainties directly propagate onto the extrapo-

lated mass, whose uncertainty is computed as a quadrature sum of all contributions. The

accuracy of the high-voltage amplifier’s output monitor and the tolerance on the trapping

lens focal length dominate the overall uncertainty. The second effect may offset the trap

axially, thus sampling a different electric field strength. Each of the effects in Table 4.2

should result in a systematic shift common to all mass measurements. The total uncertainty

obtained is 1.8%, which is included as a systematic uncertainty on the mean mass for each

microsphere.
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Table 4.2: Systematic effects on the mass measurement. The amplifier discussed produces
the voltage driving the electrodes, and thus the electric field. Geometric misalignment,
including optical tolerances, can change the value of the electric field at the location of the
trap. The application and subsequent measurement of the electric field is also subject to
systematic effects, and each measurement channel can experience electrical pickup. Effects
are determined empirically where possible, or are obtained from instrument specifications.

Effect Uncertainty (×10−3)

Amplifier-monitor accuracya σE/E ∼ 15

Lens focal lengtha σE/E ∼ 10

Amplifier-gain uncertaintya σE/E ∼ 2

Tilt of field axis σE/E ∼ 2

Tilt of trap (optical) σE/E ∼ 1

ADC offsetsa σP/P ∼ 1

Electrode-voltage offset σE/E ∼ 0.5

dc-power offsets σP/P ∼ 0.3

Local gb σg/g ∼ 0.1

Fitting uncertainty σm/m ∼ 0.1

Electrical pickup σP/P ∼ 0.02

ADC, analog-to-digital converter.
a From manufacturer datasheets.
b Estimated from Reference [90].
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We also observe scatter in the measured mass of a single microsphere between different

experimental conditions, as seen in Figure 4.3. These variations could be due to a num-

ber of effects, including optical-path-length fluctuations in the axial feedback, electronic

fluctuations in the axial feedback, and real changes in the mass of a microsphere. We do

not observe any correlations between measured mass and experimental parameters such as

the microsphere charge state or the vacuum pressure. The fluctuations are quantified by

the standard deviation of measurements with different experimental conditions, which is

included as part of the statistical uncertainty on the measured mass.

The measured masses and radii of the three individually imaged microspheres, Num-

bers 1-3, are shown in Table 4.1, together with their calculated individual densities. The

densities of these first three microspheres are consistent and the average value, ρsmall =

(1.55 ± 0.08) g/cm3, is significantly smaller than that of amorphous fused silica, ρSiO2 ≈
2.2 g/cm3 [93], as well as the value provided by the manufacturer, ρBangs = 2.0 g/cm3 [76].

Other, indirect measurements of the density of silica nanoparticles [48] also differ signif-

icantly from the values reported here. This could be the result of nonidentical synthesis

conditions and post-synthesis treatment by different manufacturers, which can have a large

effect on final particle porosity [94, 95].

Individual mass measurements and large population radius measurements of larger mi-

crospheres from a distinct manufacturer, Numbers 4 and 5 in Table 4.1, can also be used

to estimate particle density. The calculated densities for these two microspheres are also

consistent with one another, and have an average value of ρlarge = (1.88±0.10) g/cm3. This

density also matches that provided by the manufacturer, ρmicroParticles = 1.86 g/cm3, which

is based on a sedimentation test [96]. The simple fact that distinct manufacturers of nomi-

nally the same type of silica microspheres produce particles with clearly different densities,

suggest that robust characterization is necessary for any application making use of these

particles.

Spin-echo small-angle neutron-scattering measurements on particles synthesized via the

Stöber have found an open-pore volume fraction of 32% and an inaccessible-pore volume

fraction of 10% for particles with radius of approximately 80 nm [18]. It is distinctly possible

that microspheres in solution absorb a nontrivial amount of water or other solvent, and that

under low- to high-vacuum conditions, the liquid is removed, effectively lowering the mass

and density. The classical electron oscillator model [4] implies that the reduced density
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should result in a reduced refractive index

n2microsphere − 1 =
(
n2SiO2

− 1
) ρmicrosphere

ρSiO2

, (4.2)

leading to nsmall ≈ 1.33 and nlarge ≈ 1.39 (for Bangs Laboratories and microPartilcles

GmbH, respectively) at 1064 nm, where nSiO2 = 1.45 is the refractive index of fused sil-

ica [97]. These reduced densities necessarily change the optical interaction, requiring an

updated simulation with the Optical Tweezers Toolbox (see Chapter 1) to better estimate

the trapping forces and potential well associated to the trap.

4.6 Conclusion

We have presented a technique using an electrodynamic balance together with an optical

tweezer to precisely measure the gravitational mass of optically levitated silica microspheres.

The measurement is limited by systematic uncertainties of approximately 1.8% and is demon-

strated to be independent of the (known) microsphere charge state, as well as the pressure

of residual gas surrounding the microsphere.

After measuring their mass, three microspheres are collected from the trap with use of

a mechanical probe and transferred to a scanning electron microscope, where their radii

can be characterized. Together, the two precision characterizations allow direct calculation

of the microsphere density. Large populations of microspheres used for trapping are also

imaged. After accounting for the thickness of the coating, the individually measured radii

of conductively coated microspheres are found to be consistent with the distribution of radii

measured from the large population of conductively coated microspheres.

The apparent independence of the measured mass on the vacuum pressure, as well as

the consistency between the measured radii of individual microspheres that were optically

trapped and large populations of microspheres that were never trapped, both indicate a

negligible loss of microsphere material by heating, under the environmental conditions tested

for silica microspheres of radius approximately 2.35 µm. The simplicity and accuracy of the

mass measurement, along with the reliable transfer of specific microspheres from the optical

trap to air and subsequently to a different vacuum environment, opens the possibility for

other correlated, precision measurements on microscopic objects.
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Chapter 5

Electrically Driven Rotation

and Residual Gas Sensing

The content of this chapter has been adapted from References [28, 38], for which the author

was a primary contributor. Apparatus and generic experimental method descriptions have

been removed, appealing to Chapter 2 of this thesis instead, while some other sections have

been expanded for completeness.

5.1 Introduction

The ability to manipulate microscopic objects has found important applications in science

and technology. The interest in optical levitation of dielectric objects in vacuum, pioneered

by Ashkin and Dziedzic [1], has grown in recent times, with applications in precision mea-

surements [24, 25, 46, 60, 79, 98], surface science [27] and quantum technology [21, 53, 57,

58, 62, 81, 99–101]. The suggestion was made in [1] that the rotational degrees of freedom

(DOFs) of an optically levitated dielectric microsphere could be manipulated using the angu-

lar momentum in circularly polarized light. This has been realized in more recent times [52,

59, 61, 65, 102–111].

Here we present a novel technique for manipulating the rotational DOFs of an optically

levitated microsphere by using electric fields to apply a torque to the | #–

d | ∼ 100 e µm

permanent electric dipole moment [25] found in 2.35 µm radius silica microspheres grown

using the Stöber process [16]. The orientation of the dipole moment follows the orientation

of the driving field so that the angular velocity of the microsphere, #–ωms, can be set in both

117
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magnitude and direction [112]. Using the control afforded by electric torques, we observe

the spin down of a microsphere suddenly released from a rotating electric field, measure the

microsphere dipole moment by tuning the libration frequency, test the relationship between

residual gas pressure and drag, and induce gyroscopic precession by rapidly changing the

electric field axis of rotation. Because the electric field and dipole moment are both known

in this system, precise quantitative measurements are possible. Similar techniques with an

electric drive and optical readout have been demonstrated for graphene nanoplatelets in a

Paul trap [113].

This technique has immediate applications in vacuum technology, which generally plays

an integral role in science and technology. While a number of different gas-sensing tech-

nologies exist [40, 42, 43, 114, 115], under high vacuum conditions, absolutely calibrated

pressure measurements are challenging. Some of the most sensitive pressure gauges ionize

residual gas molecules and measure the resulting electrical current. Such ionization gauges

require an empirical calibration, accounting for the efficiency of the ionization technique

employed, which varies across molecular species and filament materials, and may change

over time [116–118]. Additionally, the production of cations and their associated electrons,

inherent to ionization gauges, can have a detrimental effect on conditions within an experi-

mental chamber. At higher pressures, the measurement of heat transport in a gas does not

require ionization but still requires empirical and species-dependent calibrations.

Gauges based on mechanical measurements and the kinetic theory of gases are known to

provide absolute measurements of pressure. For example, capacitance manometers measure

the force on a membrane exposed to the residual gas. Force sensitivity limits the pressure

accessible to such gauges to approximately 10−5 mbar [40]. By comparison, spinning-rotor

gauges measure the torsional drag induced by residual gas on a macroscopic rotor (an idea

originally proposed by Maxwell [119]) which, in existing devices, is generally magnetically

levitated. At high vacuum, in the molecular flow regime, such drag can be simply related to

the pressure [104, 120–124], resulting in an absolute calibration. The minimum measurable

pressure, approximately 5×10−7 mbar, is usually limited by systematic uncertainties or the

required integration times [122, 125, 126].

With the rotational techniques developed here, we have devised a spinning-rotor vacuum

gauge based on an optically levitated, electrically driven microsphere. The torsional drag on

the microsphere can be measured by analyzing two distinct types of rotational dynamics of

the trapped microsphere, where rotation around a single axis is measured optically via the
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coupling of a linearly polarized trapping beam with a residually birefringent microsphere. In

this scheme, the driving and interrogation mechanisms are not influenced by magnetic fields,

and thus, the gauge can operate in conditions inaccessible to conventional spinning-rotor

gauges. Another significant advantage of this technology, most applicable to experiments

based on optically levitated particles, is that the measurement of pressure is relative to the

environment in the immediate vicinity of the particle itself. A translation of the optical trap,

or an array of optical traps each filled with a single rotating microsphere, would thus allow

for mapping of pressure gradients with a spatial resolution limited only by the dimensions

of the trapped particle(s).

5.2 Experimental Setup

The rotational response of a trapped microsphere, including an applied electric field, is

described by the equation of motion:

#̇–

L =
#–

T =
#–

d × #–

E − βrot
I

#–

L +
#–

T opt, (5.1)

where
#–

T is the total torque,
#–

d is the electric dipole moment,
#–

E is the electric field,
#–

L is

the angular momentum related to the angular velocity by #–ωms =
#–

L/I, βrot is the rotational

damping coefficient, I is the moment of inertia, and
#–

T opt is the optical torque. The part

of the optical torque which does not average to zero over a rotation is generally negligible

compared to the electric torques used here [127].

The angular velocity and the rotational phase of the microsphere are measured optically.

As the microsphere rotates, it couples some of the incident linearly polarized optical power,

P0, into the cross-polarized optical power, P⊥, according to,

P⊥ = P0 sin (η/2)
2 sinϕ2, (5.2)

where η is the phase retardation between the fast and slow axes, and ϕ is the angular

displacement of the microsphere relative to an origin in which the fast axis is aligned with

the incident polarization [128]. The sinϕ2 term implies that the phase of the microsphere

is encoded as a modulation of P⊥, at twice the rotation frequency, ωms.

The optical trap used here is described in detail in Chapter 2. The critical features of the

apparatus for the measurement itself are the six shielding electrodes used to apply arbitrary
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electric fields and the cross-polarized light monitor to measure the microsphere response.

Active stabilizing feedback is used for all measurements, and thus the standard imaging

system is required, although the x, y, and z responses of the microsphere are not part of

the final measurements presented. The dynamics of a rotating microsphere governed by

Equation (5.1) will be studied with three distinct sets of initial conditions and steady-state

drives. Two of these three cases will allow measurement of the rotational drag coefficient

βrot, and are used to implement a spinning-rotor vacuum gauge. The relevant equations will

be derived prior to the presentation of the measurements themselves.

Each drive electrode is connected to a high-bandwidth, high-voltage amplifier driven by

a digitally-synthesized analog signal, described in Appendix D. This apparatus is capable

of producing arbitrary three-dimensional electric fields up to 100 kV/m in magnitude at

frequencies as high as 1 Mrad/s, which limits the rotation frequencies achieved here. To

produce a spinning electric field, a sinusoidal voltage is applied to a set of four electrodes in

a plane, with a phase offset of π/2 between successive electrodes. A finite element analysis

(FEA) is used to calculate the electric field based on the applied voltages.

Before performing a measurement, the microsphere is discharged as described in Refer-

ences [24, 27, 47] and detailed in Chapter 2. In addition, the microsphere is prepared in

a state of known angular momentum and rotational phase by first dissipating any initial

angular velocity using 0.1 mbar of N2 gas. An electric field rotating at ω0 ≈ 2π rad/s with

E = 41 kV/m is then turned on to align
#–

d with
#–

E. The chamber pressure is reduced

to the base pressure of the vacuum system and ω0 is increased at a rate of 300 rad/s2 to

the desired rotation frequency. Changes in the rotational dynamics in response to changes

in the electric field magnitude and direction, as well as the damping coefficient, βrot, can

then be observed. The initial demonstration of the rotational dynamics presented here were

collected with one specific microsphere, while three distinct microspheres were used for the

spinning-rotor vacuum gauge. Similar qualitative behavior is observed across microspheres,

and the measured dipole moments are representative of the population.

A typical amplitude spectrum of P⊥, in the region around twice the drive frequency,

with ω0 =100π krad/s is shown in the top panel of Figure 5.1. A clear peak which follows

the frequency, ω0, of the electric driving signal is observed at 2ω0. The ∼ 10 ppm amplitude

modulation caused by rotation of the microsphere implies that the relative phase retardation

of this microsphere is η ∼ 10−2. The prominent sidebands are caused by harmonic oscillation

of the dipole about the electric field, which can be seen by demodulating the phase of P⊥
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Figure 5.1: Top: typical amplitude spectrum of P⊥ for a microsphere prepared in a state
of angular momentum pointing along the ẑ direction. The microsphere is spinning with
ωms = 100π krad/s, driven by an electric field with E = 27 kV/m. The prominent line with
sidebands are signatures of the microsphere rotation, with the position of the central line at
twice the drive frequency. The sidebands are phase modulation of the rotation frequency,
as shown in the bottom panel.
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relative to the electric field carrier signal as shown in the bottom panel of Figure 5.1.

5.3 Libration

The simplest dynamics with the electric dipole interacting with a rotating electric field can

be analyzed in the case where the electric field is rotating about a fixed axis with the dipole

lying in the same plane as the electric field. In the frame co-rotating with
#–

E, Equation 5.1

reduces to an equation of motion for ϕ, the angle between the electric field and the dipole,

ϕ̈ = −ω0Ωsin (ϕ)− 1

τ
(ω0 + ϕ̇), (5.3)

where,

Ω ≡ dE/(Iω0). (5.4)

For sufficiently low damping, τΩ > 1, this equation has an equilibrium solution,

ϕeq = − arcsin

(
1

τΩ

)
= − arcsin

(
βrotω0

dE

)
, (5.5)

and can be linearized to give harmonic oscillation at the frequency

ωϕ =
√
cos (ϕeq)ω0Ω =

√
cos (ϕeq)

E d

I
. (5.6)

This results in the sidebands shown in Figure 5.1. The dependence of ωϕ on the magni-

tude of the driving electric field, E, is well-modeled by Equation (5.6), as shown in Figure 5.2.

The equilibrium phase lag ϕeq may be neglected because τΩ ≫ 1 at the base pressure of the

vacuum system. The fit shown in Figure 5.2 extracts the ratio d/I, which can be used to

determine the dipole moment, d, if the microsphere is assumed to be a uniform sphere with

the radius, rms = (2.35±0.02) µm and mass Mms = 85±9 pg, measured for this lot of micro-

sphere in Reference [19] (see Chapter 4). This procedure gives I = (1.9±0.2)×10−25kgm2,

which implies d = 127± 14 e µm, in agreement with Reference [25].

The ability to measure the permanent electric dipole moment from the frequency of

harmonic oscillation enables precise measurements of torques on an optically levitated par-

ticle in high vacuum by balancing an unknown torque against an known electric torque.

Importantly, this measurement technique also yields another, previously unknown, physical



5.4. GYROSCOPIC PRECESSION 123

Figure 5.2: Harmonic oscillation frequency, ωϕ, versus driving electric field amplitude, E,
for a microsphere spinning at ωms = 100π krad/s at a pressure of 2× 10−6 mbar. The data
is fit to Equation (5.6), obtaining (d/I) = (108± 2)A s/kgm) and d = 127± 14 e µm.

property of the test masses, which can be used to better understand background forces in

short-distance force sensing applications and will also serve to calibrate some of the mea-

surements to be described below.

5.4 Gyroscopic precession

When the electric field rotation axis and the angular momentum are not aligned, the dy-

namics are complex and depend sensitively on the initial conditions. For Ω ≪ ω0, and a

field
#–

E(t) = E (cos (ω0t)ẑ − sin (ω0t)ŷ), rotating about the x̂ axis, an approximate solution

is given by,
#–

L(t) = L {cos [(Ω/2)t] ẑ + sin [(Ω/2)t] ŷ} , (5.7)

and,

#–

d (t) = −d
{
cos [(ω0 +Ω/2)t] x̂

+ sin [(ω0 +Ω/2) t] cos [(Ω/2)t] ŷ

− sin [(ω0 +Ω/2) t] sin [(Ω/2)t] ẑ
}
,

(5.8)
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Figure 5.3: Top three panels: Spectra of the cross-polarized light intensity, P⊥, for a micro-
sphere precessing about the x̂ axis while spinning at ωms = 100π krad/s). The modulation
of the cross-polarized light occurs predominantly at twice the precession frequency, denoted
by red diamonds. Bottom panel: Ω for different E. The slope of the fit (red line) provides
(d/I) = ω0Ω/E = (106±2)A s/kgm, which is consistent with the measurement of d/I from
the frequency of small oscillations.
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in the absence of dissipation.

The angular momentum vector
#–

L, undergoes left-handed precession about the electric

field axis of rotation at an angular frequency Ω/2. The factor of 1/2 is due to the fact

that the torque is averaged over a rotation of the microsphere. This behavior is observed

as a low-frequency modulation of the cross-polarized light most prominently at twice the

precession frequency. The amplitude spectra for a precessing microsphere driven by a range

of electric fields magnitudes are shown in Figure 5.3, in which the microsphere is spinning

at ω0 = 100π krad/s. The low-frequency amplitude modulations of the cross-polarized light

are larger than those for rotation about the trapping beam axis because of the coupling

with the feedback used to stabilize the microsphere at low frequencies. As expected, the

precession frequency is proportional to the magnitude of the driving electric field and the

slope of Ω vs E, which implies (d/I) = (106 ± 2)A s/kgm, is consistent with the value of

(d/I) = (106± 2)A s/kgm from the measurement of libration.

5.5 Torque Noise and Torsional Drag

The previously presented measurements demonstrate that the dynamics of a rotating mi-

crosphere are indeed well-modeled by Equation 5.1, so that metrological applications can

be easily understood, such as the implementation of a vacuum gauge. Spinning-rotor vac-

uum gauges generally operate in the molecular flow regime, where they make use of the

proportionality between gas pressure and the torsional drag induced by the gas in order to

measure the chamber pressure. From the fluctuation dissipation theorem, the torsional drag

coefficient βrot is proportional to the single-sided torque noise power spectral density SN ,

SN = 4kBTβrot, (5.9)

where kB = 1.381×10−23 m2 kg s−2K−1 is the Boltzmann constant and T is the temperature

of the residual gas. SN can also be computed by considering the force noise spectral density,

SF∥ , imparted parallel to a surface element of the microsphere by successive gas molecule

collisions and adsorption, followed by thermalization and re-emission, the common way to

treat diffusive scattering. SF∥ can be integrated across the surface of the microsphere to
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compute SN , which is then combined with Equation (5.9) to obtain the relation,

βrot ×
vth
P

= πr4
(
32

9π

)1/2

, (5.10)

where vth =
√
kBT/m0 is the characteristic thermal velocity of residual gas molecules of

mass m0 at temperature T , P is the gas pressure, and r is the microsphere radius. This

is identical to the results in References [123, 124], and allows an absolute measurement of

the pressure P via βrot. The right hand side of Equation (5.10) is a geometric factor that

depends only on r, the radius of the microsphere itself. Thus, if the gas species (i.e. vth) is

known, a measurement of the torsional drag constant βrot can be used to directly infer the

gas pressure from Equation (5.10).

Two phenomena can be used to measure the torsional drag βrot produced on a spinning

microsphere. (1) When released from a driving field, the angular momentum of the micro-

sphere will decay exponentially with a time constant inversely proportional to the torsional

drag coefficient. This is the primary method used to measure pressure with a spinning-

rotor gauge and depends only on knowledge of the spherical rotor’s radius and moment of

inertia [38]. (2) When driven with an electric field, the torque exerted on the microsphere

is proportional to the sine of the angle between the rotating field and the microsphere’s

permanent dipole moment. Gas surrounding the microsphere produces a drag torque which

determines the equilibrium angle between the driving field and the microsphere’s dipole mo-

ment. This angle can be measured as a phase difference between the driving field and the

power modulation produced in the cross-polarized light [38].

It is distinctly possible that translational damping on resonance could also be used

to infer the vacuum pressure. However, optically trapped microspheres in the described

apparatus exhibit instabilities at high vacuum, requiring active feedback in order to retain

them for long periods [19, 24–27, 38, 60]. The active feedback is designed primarily with

derivative gain to mimic the damping provided by residual gas in lower vacuum environments

where the trap is stable. It is difficult to deconvolve this feedback with the damping provided

by actual residual gas in the vicinity of the microsphere. At first order, the rotational degrees

of freedom are unaffected by the stabilizing feedback.
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5.6 Release from a Spinning Field

After initializing the microsphere with a definite angular momentum and phase, the condi-

tions can be changed to observe different solutions of the equation of motion. The simplest

solution occurs when the drive electric field initially rotating about the trapping beam axis

is switched off, so that only the drag term, −(βrot/I)
#–

L, remains in Equation (5.1) and the

initial angular momentum decays according to:

#–

L(t) = e−t/τ #–

L(0). (5.11)

Here, the damping time τ , is related to the damping coefficient by τ = I/βrot. This

decay is illustrated in Figure 5.4 at the base pressure of the vacuum system (2×10−6 mbar).

For the first 1000 s, ωms ≳ 150 krad/s, the drag torque dominates, and the data are well

modeled by an exponential decay. The behavior beyond 1000 s can be attributed to an

optical torque,
#–

T opt ∼ 10−23 Nm.

The average optical torque on a birefringent particle is given approximately by

#–

T opt ≈
P
ωopt

(
1− cos (kr∆n) sin 2ϕ

)
, (5.12)

where P is the ∼ 1 mW trapping beam power, ωopt ∼ 1015 rad/s is the optical frequency,

k ∼ 2π/(1.0 µm) is the wavenumber, r = 2.35 µm is the radius of the microsphere, ∆n is the

birefringence, and ϕ is the degree of ellipticity [127, 129]. The terminal angular velocity of

the microsphere can then be explained by a fluctuating ∼ 100 ppm degree of ellipticity in

the trapping beam.

From Equation (5.10), the pressure can be written in terms of a constant κ = κ(T, r),

the gas particle mass m0, and the torsional drag coefficient βrot,

P =
κ

√
m0

βrot, (5.13)

where κ ≡ (1/r4)
√
9kBT/32π is determined by measuring the microsphere radius r and the

experimental chamber temperature T . The microsphere radius is determined indirectly by

measuring the mass of the microsphere via electrostatic co-levitation [19] (see Chapter 4) and

assuming the same uniform density found in Reference [19], as the microspheres are derived

from the same lot. The drag coefficient βrot is measured by observing the spindown time
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Figure 5.4: Time evolution of ωms after the driving electric field is switched off. For ωms ≳
150 krad/s the angular velocity exhibits an exponential decay. For ωms ≲ 150 krad/s the
dynamics are modified by torque that could be explained by a ∼ 100 ppm degree of ellipticity
in the 1 mW trapping beam and the η ∼ 10−2 phase retardation of the microsphere.
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of the microsphere released from a driving field. If torsional drag due to residual gas is the

only torque present, then the angular velocity of the microsphere will decay exponentially

with time constant τ = I/βrot, where I is the microsphere moment of inertia.

5.6.1 Spindown Pressure Measurement

As can be inferred from Figure 5.4, there is a roughly constant residual torque, likely optical

in nature and generated from a small ellipticity in the trapping beam, which couples to the

residual birefringence of the microsphere, as discussed in References [38, 65]. Under these

conditions, the equation of motion for the microsphere angular momentum and the solution

for the frequency of rotation are given by:

dL

dt
= Nopt −

β

I
L(t), (5.14)

=⇒ f(t) = f0e
−(t−t0)/τ + fopt(1− e−(t−t0)/τ ), (5.15)

where L(t) is the angular momentum of the microsphere, f0 is the initial rotation frequency

at time t = t0, τ = I/βrot is the decay time due to gas drag, and fopt = Nopt/(2πβrot) is the

terminal rotation frequency of the microsphere due to a constant optical torque Nopt. The

quantity fopt can be measured by allowing the microsphere to reach steady state in the ab-

sence of any electrical driving torques and observing the terminal rotation frequency. Three

different microspheres were used in this work, with generally consistent results. For micro-

sphere No. 1 of those used for the spinning-rotor vacuum gauge demonstration, the terminal

rotation frequency was measured to be fopt = (8315± 559) Hz, where the uncertainty is the

maximum observed deviation from the central value over approximately 6 hrs of successive

measurements, where for each 2-s integration, the terminal rotation can be measured to

within ±1 Hz uncertainty. This type of systematic effect is similar to the “offset correction”

necessary for magnetically levitated spinning-rotor gauges [121, 122, 125, 126].

To measure τ , the microsphere is released from an f0 = 110 kHz driving field, and

the frequency of power modulation of cross-polarized light produced by the rotation of

the microsphere is observed. Successive 2-s integrations, separated by approximately one

second, are first bandpass-filtered and then Hilbert-transformed to recover the instantaneous

frequency of power modulation as a function of time. The median time of the i-th integration,

⟨ti⟩, relative to the field turning off at t0, and the arithmetic mean of the instantaneous

frequency measured during this integration, ⟨fi⟩, are used to calculate a value for τ from
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Figure 5.5: Damping time τ calculated from Equation (5.16) versus median integration time
⟨ti⟩, for the four measurements with microsphere No. 1, indexed chronologically. The bands
show the 1σ uncertainty propagated from the individual uncertainties of the values used to
calculate τ .

Equation (5.15):

τi =
⟨ti⟩ − t0

log
(

f0−fopt
⟨fi⟩−fopt

) . (5.16)

The calculated value of τi is plotted as a function of median integration time in Figure 5.5

for four example measurements performed with microsphere No. 1. The shaded bands repre-

sent the quadrature sum of systematic and statistical uncertainties, and are dominated by a

systematic uncertainty in the assumed value of the terminal rotation frequency. For a single

measurement, the estimation of τ from Equation (5.16) is self-consistent for approximately

the first 500-s. For longer times, the effect of a slowly changing optical torque skews an

estimation of τ by up to 10%.

The exponential decay of the rotation frequency for each of the four measurements with

microsphere No. 1 are detailed in Figure 5.4, where data are shown for about 1 hour following

the release of microsphere No. 1. Data in Figure 5.4 are overlaid with Equation (5.15), where

the values of τj for measurements j = 0, 1, 2, 3 are the mean values of τi for ⟨ti⟩ < 500 s, and

fopt = 8315 Hz is fixed. The structure in the residuals, with an amplitude approximately

2% of f0, is likely the result of the slowly fluctuating optical torque.
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Figure 5.6: Exponential decay of microsphere No. 1 angular velocity due to torsional drag
from residual gas after a 110 kHz driving field has been turned off. Data are shown for
the same four measurements detailed in Figure 5.5. Dotted lines indicated realizations of
Equation (5.15) with τ = τj for measurements j = 0, 1, 2, 3, where τj is the average of the
values plotted in Figure 5.5. The structure in the residuals, with amplitude ∼2%, is likely
the result of a slowly fluctuating optical torque.
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Table 5.1: Results of spindown pressure measurements, taken with microsphere No. 1. Sta-
tistical and systematic uncertainties are propagated independently from uncertainties on r,
I, and τ .

P [10−6 mbar]

P0 3.53± 0.17 (stat.)± 0.30 (sys.)

P1 3.56± 0.17 (stat.)± 0.31 (sys.)

P2 3.49± 0.17 (stat.)± 0.30 (sys.)

P3 3.43± 0.16 (stat.)± 0.29 (sys.)

The values of P computed with Equation (5.13) are shown in Table 5.1, assuming

m0 = 18 amu, as RGA analysis found the residual pressure to be dominated by water

vapor. The four successive measurements, taken over the course of a few days with the same

microsphere, are consistent within statistical uncertainties, and the systematic uncertainty

should be common to all. Magnetically levitated spinning-rotor gauges typically have similar

measurement uncertainties [120, 125, 130]. As a specific example, at a calibration pressure

of 2.0× 10−4 mbar, NIST calibration services for steel spinning-rotor gauges report a 0.02%

relative uncertainty [130], i.e., σP ≈ 4 × 10−8 mbar. This is within a factor of five of the

uncertainty of our newly demonstrated silica microsphere spinning-rotor gauge (Table 5.1).

Importantly, these are measurements of the chamber pressure in the immediate vicinity

of the microsphere, so that they can be used to estimate force and torque noise in precision

measurement applications. The total pressure measured by the RGA is lower by approxi-

mately a factor of three, which could be attributed to a poor filament or response calibration,

or may be indicative of a real pressure difference across the experimental chamber. With the

current apparatus, there is a substantial pumping impedance between the trapping region

and the RGA filament, as the trap is confined within the six electrodes which form a cage.

While the presence of anomalous sources of dissipation can’t be excluded, two possible

sources are shown to be too small to account for the pressure difference observed. The

image charge induced on the 6 electrodes by the electric dipole moment would exert a

torque roughly six orders of magnitudes smaller than the drag torque at the initial rotation

velocity. Anomalous damping may also arise from electric field noise on the, nominally

grounded, driving electrodes. Results in plasma physics suggest that fluctuating fields in the

frequency band around the rotation frequency of the microsphere could also tend to increase
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the angular velocity of the microsphere through stochastic acceleration [131], resulting in an

apparent pressure that would be lower instead of higher.

To test the second phenomenon, the equation of motion given by Equation (5.14) was

numerically integrated, including 100 distinct implementations of random torque fluctuations

given by Equation (5.9), and distinct realizations of anomalous torque from the electric field

noise produced by the driving electronics when the field is nominally off. As this anomalous

torque is incoherent with the decaying angular momentum of the microsphere, its effect on

the apparent damping time was found to be less than 0.1%, and can’t explain the higher

value of the measured pressure.

The apparent pressure difference may also be due to an elevated temperature of the

microsphere, which is a notoriously difficult quantity to measure [36, 63, 132–134], often

yielding only an upper bound. The derivation of Equation (5.10) assumes that the mi-

crosphere itself is in thermal equilibrium with the surrounding gas, so that incident and

re-emitted gas particles have the same Maxwellian thermal velocity. If this assumption is

removed, then the right-hand side of Equation (5.13) would have a multiplicative factor

[2Tgas/(Tgas + Tms)], with Tgas being the temperature of incident residual gas particles as-

sumed to be in equilibrium with the chamber itself, and Tms being the elevated temperature

of the microsphere assumed to be in equilibrium with outgoing residual gas molecules. If the

apparent pressure difference between the RGA and the location of the trap is due entirely

to an elevated microsphere temperature, this implies Tms ∼ 1500 K.

5.7 Equilibrium Phase Lag

Once the dipole moment is known, it is possible to measure the drag due to residual gas

and further verify models of dissipation for optically levitated particles. The equilibrium

phase lag ϕeq between
#–

d and
#–

E is expected to increase with the pressure P , as the drag

from the gas increases. In the molecular flow regime, the damping coefficient, βrot, can be

written as βrot = k P , where k =
√
m0/κ is a constant that depends on the geometry of the

microsphere, as well as the temperature and species of residual gas [123, 124]. The argument

to the arcsin in Equation (5.5) can then be parameterized by

ω0βrot
dE

=
ω0k

dE
P =

P

Pmax
, (5.17)
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where Pmax ≡ dE/(ω0k) is the pressure at which ϕeq → −π/2, where the microsphere rota-

tion loses lock with the driving electric field (in practice fluctuations cause the microsphere

to lose lock before ϕeq reaches −π/2).

This behavior is shown for one microsphere in the three top panels of Figure 5.7 for

three different amplitudes of the driving field. It is evident that the unlocking pressure

depends on the field amplitude and that after losing lock ϕeq becomes random. Pmax can

be extracted from a fit for each field amplitude, as plotted (with additional values of the

field) in the bottom panel of Figure 5.7. The linear relationship k = dE/(ω0Pmax) indicates

that the dissipation is proportional to the residual gas pressure and there are no significant

additional sources of dissipation at pressures ⪆ 10−2 mbar.

The fit reports k = (4.1± 0.6)× 10−25 m3s, assuming d = 127± 14 e µm and a residual

gas dominated by N2. This is consistent with the value k = 3.4 × 10−25 m3s predicted

in References [123, 124] for a r = 2.35 µm microsphere in thermal equilibrium with 300 K

N2 gas. No evidence for increased dissipation due to an elevated microsphere temperature

or surface roughness is observed. This measurement of k can be used to infer the base

vacuum pressure in the vicinity of the microsphere for the spin-down time measured in

Figure 5.4 from P = I/(kτ). This give P = (4.9 ± 0.7) × 10−6 mbar, which is roughly a

factor of two greater than the pressure measured after the demonstration experiment with

the cold cathode gauge. This discrepancy could be due to another source of dissipation

which becomes significant at low pressures, inaccuracy of the cold cathode gauge, or a real

pressure difference between the residual gas pressure in the trap and the cold cathode gauge

at the end of the measurement.

With the technique in hand, we can consider further dedicated pressure measurements

with other microspheres. This second method proposed to measure βrot can be substantially

faster, but in our apparatus has only sensitivity for moderate vacuum. Since this is also

the regime in which absolutely calibrated capacitance manometers operate, this method is

used for a cross-check of the technique. Consider a microsphere rotating at fixed frequency

under the influence of a rotating electric field. In the rotating reference frame, the equation

of motion for the phase ϕ between the driving field and the orientation of dipole moment

has an equilibrium solution developed in Reference [38] and given by,

ϕeq = −arcsin

(
βrotω0

Ed

)
= −arcsin

(
P

Pmax

)
, (5.18)
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Figure 5.7: Top three panels: Equilibrium phase, ϕeq, versus chamber pressure for several
magnitudes, E, of the driving field with ωms = 100π krad/s. For each value of E, ϕeq
increases until the microsphere loses lock with the field, and the phase becomes random.
For each E, a fit to Equation (5.5) (with the argument in Equation (5.17)) is shown in red.
Pmax is identified by a red diamond. Bottom panel: The linear relationship between Pmax

and E, with additional E included. The slope of the fit of E vs pmax is 639±64 (kV/m)/mbar.
Assuming the dipole moment measured from the frequency of small oscillations, this gives
k = βrot/P = (4.1 ± 0.6) × 10−25 m3s, which is consistent with k = βrot/P = 3.4 × 10−25

m3s predicted in References [123, 124].



136 CHAPTER 5. ROTATION AND GAS SENSING

Figure 5.8: Equilibrium phase lag between the orientation of the microsphere dipole moment
and a rotating electric field, versus the residual gas pressure determined by two capacitance
manometers. Three distinct measurements are shown with He, Ar, and SF6 residual gas. As
the pressure is increased, the phase lags according to Equation (5.18), and Pmax is measured
from a fit to this expression. As ϕeq approaches −π/2, the microsphere rotation becomes
unlocked from the driving field (ϕ becomes random) at a pressure slightly below Pmax, due
to librational motion of the microsphere and torque fluctuations from the increasing pressure
of the surrounding gas.

where ω0 is the angular driving frequency, E is the electric field magnitude, and d is the

permanent electric dipole moment of the microsphere. The expression is written in terms

of a single parameter Pmax, the maximum pressure that has a valid equilibrium solution

given particular values of E, d, and ω0. Above this pressure, the driving field can no longer

provide sufficient torque to maintain the microsphere’s rotation. Using Equation (5.10),

Pmax =
Ed

ω0

P

βrot
≡ Ed

ω0

κ
√
m0

, (5.19)

where κ is already defined. The pre-factor (Ed/ω0) is related to the driving torque and can

be set by the experimenter, whereas κ is a constant across gas species, as the microsphere

radius is unchanged throughout the measurements.

Thus, a gauge cross-check consists of measuring Pmax, which is inversely proportional to

the damping constant, as a function of m0, the particle mass of a residual gas species, while
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maintaining a constant driving torque and chamber temperature. Pmax can be measured by

linearly ramping the pressure, monitored with a capacitance manometer, while continuously

measuring ϕeq until unlocking, at which point the phase lag ϕ becomes random, as shown

in Figure 5.7.

This effect is demonstrated for He, Ar, and SF6 in Figure 5.8. Due to both the librational

motion of the microsphere and torque noise from the increasing pressure of residual gas, the

microsphere rotation becomes unlocked from the driving field at a pressure slightly below

Pmax. Hence, Pmax is determined by extrapolating the endpoint of the arcsine relationship

in Equation (5.18), as seen in Figure 5.8.

The measurement of ϕeq is used to validate Equation (5.10) and cross-check the mi-

crosphere as a spinning-rotor gauge against the capacitance manometer. By comparison,

magnetically levitated spinning-rotors often make use of static expansion (wherein a defined

amount of gas is allowed to fill a chamber of known volume) in order to provide cross-checks

with ion gauges. Practical limitations of the current apparatus, primarily the bandwidth of

the driving electronics, place a lower bound on the pressure observable with this method at

∼10−5 mbar, as at lower pressures ϕeq is too small to measure. Rotation velocities greater

than the ∼100 kHz achievable in the current system may allow for the extension of the

method to lower pressure.

Silicon nanorods in counter-propagating beam traps have also been used to measure

equilibrium phase lag induced by gas drag, but with the rotation driven optically by modu-

lating the polarization (from linear to circular) of the trapping beams at fixed frequency [104].

Phase lag between the optical drive and the induced rotation of the silicon rotor was demon-

strated to accurately predict gas pressures in the range 4− 10 mbar.

5.8 Gas Composition and Changes in Dipole Moment

In many vacuum chambers, the ultimate base pressure achieved is limited by a single residual

gas species, such as water vapor or hydrogen, and Equation (5.19) is directly applicable. In

this work, requiring the deliberate introduction of various gas species, a small correction

needs to be applied to account for contamination, primarily by water. When there are

multiple species, each contributes independently to the total torsional drag. Appealing to

the analysis in References [123, 124], the torque noise spectra of multiple gases can be added,
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each with partial pressure Pi = χiPtot and particle mass m0,i,

SN,tot = 4kBTβrot = 4kBT

(
Ptot

κ

√
m0,eff

)
, (5.20)

where the expression has been written in terms of an effective mass, m0,eff =
(∑

i χi
√
m0,i

)2.
The mole fractions, χi, can be measured with an RGA, appropriately accounting for dif-

ferences in ionization probability for different gas species. For He, N2, Ar, and SF6, the

preparation of the manifold results in an apparent purity of ≳99.9%, limited by systematic

uncertainties in RGA ionization probabilities for different gas species. In the cases of Kr

and Xe, the apparent purity is ∼99%, limited by water contamination in the manifold.

The process of characterizing the residual gas leaked into the experimental chamber

makes use of an RGA on the experimental chamber itself, which tends to charge the trapped

microsphere with an excess of electrons. The microsphere is returned to zero charge, prior

to spinning up and performing the drag measurements, by repeated exposure to ultraviolet

photons from an Xe flashlamp [24, 25]. The process of charging and discharging appears to

change the microsphere electric dipole moment.

In order to measure κ as defined in Equation (5.19), the term (Ed/ω0) must be measured

precisely. The quantities E and ω0 are controlled and measured precisely, and via the relation

between libration frequency and electric field amplitude, it is possible to characterize the

microsphere permanent dipole moment d. This is done by analyzing the librational motion

about the instantaneous direction of the electric field, together with a calculation of moment

of inertia from the measured mass of the microsphere.

Over the course of all measurements presented here, the dipole moment assumed values

between approximately 95 and 120 e µm for microsphere No. 1, between 30 and 55 e µm

for microsphere No. 2, and between 80 and 110e µm for microsphere No. 3. Without the

RGA filament on, the dipole moment was measured to be constant, within measurement

uncertainties, over the course of a day.

5.9 Capacitance Manometer Cross-Check

The microsphere spinning-rotor vacuum gauge is cross-checked via the following procedure:

first, the gas manifold is prepared with a particular species and m0,eff is characterized by

leaking a sample of the gas into the experimental chamber where the RGA is present; second,
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Figure 5.9: The quantity Pmax/d is plotted against the effective mass of the gas m0,eff

for different species spanning the 4 to 150 amu range, for three different microspheres.
With E and ω0 known, the constant κ is extracted by fitting Equation (5.19) to the data,
with a single free parameter, as shown for each microsphere. A χ2-minimization finds
χ2
1,min/NDOF = 1.9/1, χ2

2,min/NDOF = 3.5/1, χ2
3,min/NDOF = 8.5/5. Residuals shown below

are plotted with the same units as the data.
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the chamber is pumped to its base pressure, the microsphere is returned to a neutral state,

and its permanent electric dipole moment d is determined by analyzing the libration. Finally,

the gas prepared is leaked into the experimental chamber, and the equilibrium phase lag ϕeq
is measured as a function of gas pressure to determine Pmax. The RGA filament is turned

off prior to the second and third steps.

For microsphere No. 1 and microsphere No. 2, this procedure was performed three times

for He and N2, while for microsphere No. 3 the measurement was performed with He, N2, Ar,

Kr, Xe, and SF6. Successive measurements with each microsphere and gas species are found

to agree and are averaged together by considering the quantity (Pmax/d), to account for the

small differences in dipole moment between measurements. The results of all pressure ramp

measurements are shown in Figure 5.9. A χ2-minimization with a single parameter is used

to fit Equation (5.19) to the data and extract κ for each microsphere. The data are well

modeled by Equation (5.19), demonstrating the validity of Equation (5.10) and the analysis

in References [123, 124].

The values of κ determined with these analyses are shown in Table 5.2, together with the

individual microsphere radii and the expected value of κ, which have both been computed

from the known value of the density [19] and the measured value of the microsphere mass,

assuming the microsphere is thermal equilibrium with the gas. The consistency between the

measured and calculated values suggest that in moderate vacuum, P ≈ 10−3 − 10−1 mbar,

the microsphere is indeed in thermal equilibrium with the gas. The uncertainty in the

directly measured value of κ is dominated by systematic uncertainties in the measured

dipole moment, which, in turn, depends on the uncertainties in the moment of inertia,

another derived quantity.

Previous work with magnetically levitated spinning-rotor vacuum gauges usually include

a momentum accommodation coefficient relating specular and diffuse reflection of gas par-

ticles, and which encompasses rotor geometry and surface composition. Extensive measure-

ments have found this factor to be consistent with unity for steel rotors, with percent-level

precision [120–122, 125, 126, 135]. In this work, the accommodation coefficient would ap-

pear as a multiplicative constant σ on the right-hand side of Equation (5.10). Comparing

the measured and calculated values of κ, the accommodation coefficients σi for the i-th

microsphere were found to be consistent with unity: σ1 = 0.98 ± 0.04 (stat.) ± 0.08 (sys.),

σ2 = 1.02 ± 0.05 (stat.) ± 0.08 (sys.), and σ3 = 0.96 ± 0.04 (stat.) ± 0.07 (sys.). Prior work
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Table 5.2: Calculated and measured calibration factors κ for the three microspheres used
here, together with their measured masses, from which the values of r and then κ are
determined. The microsphere density was assumed to be ρms = 1.55±0.05 (stat.)±0.08 (sys.)
from Reference [19]. The relatively large uncertainty in ρms limits the precision with which κ
can be calculated, whereas the precision of the measurement of κ is limited by uncertainties
in the measured dipole moment and Pmax.

κ [1011 J1/2m−4]

mms [pg] Theory Experiment

1 84.3± 0.2 (stat.)± 1.5 (sys.) 6.3± 0.3 (stat.)± 0.5 (sys.) 6.47± 0.06 (stat.)± 0.25 (sys.)

2 84.2± 0.4 (stat.)± 1.4 (sys.) 6.3± 0.3 (stat.)± 0.5 (sys.) 6.21± 0.06 (stat.)± 0.24 (sys.)

3 85.0± 0.6 (stat.)± 1.5 (sys.) 6.2± 0.3 (stat.)± 0.4 (sys.) 6.48± 0.09 (stat.)± 0.17 (sys.)

with a single levitated silica nanoparticle, with diameter d ≈ 70 nm, has found an accom-

modation coefficient of σ = 0.65 ± 0.08 [134] based on an analysis of heating rates. The

discrepancy could be the result of the vastly different scale of the two types of rotors, poorly

understood material properties, as well as a tendency for nanoscale particles to be highly

non-spherical (see scanning electron microscopy images in References [17, 52, 55, 59, 136,

137]).

The consistency between the measured and computed values of κ is also an indirect val-

idation of the work presented in Reference [19] which makes no assumptions about micro-

sphere temperature or thermal equilibrium and demonstrates independence across vacuum

pressures P ≈ 10−6 − 100 mbar. If the density computed there was incorrect, quantities

derived from this density, such as κ, would be inconsistent with independent measurements

of those quantities.

5.10 Non-ionizing Gas Analyzer

If the rotational dynamics of a microsphere with a known value of κ are analyzed while

the pressure is measured with a calibrated, species-independent vacuum gauge such as a ca-

pacitance manometer, the combination can be used as a non-ionizing gas analyzer, operable

directly in moderate vacuum. In particular, this system would excel as a binary gas analyzer,

comparing the concentrations of two gases, such as one might encounter in nanofabrication

with dopants in a carrier gas, or in chemistry with a particular stoichiometric ratio of reagent

gases.
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From Equation (5.13), the mass of effective residual gas particle can be calculated,

m0,eff =

(
κβrot
P

)2

=

(∑
i

χi
√
m0,i

)2

, (5.21)

where βrot can be determined from a spindown measurement, βrot = I/τ , or from an equi-

librium phase lag measurement, βrot = Ed sin(−ϕeq)/ω0, where ϕeq is strictly negative. The

latter quantity can be measured continuously. Such a system has an immediate advantage

over ionizing RGAs, as it can operate directly in the pressure regime P = 10−5 − 100 mbar,

whereas an ionizing RGA requires P < 10−4 mbar and is often connected to a vacuum

chamber of interest by a leak valve, which can itself change the relative concentrations of

gases. Indeed, the total absence of ionization offers its own advantage.

5.11 Conclusion

We have demonstrated electrically driven rotation of optically levitated particles. Although

it would be technically challenging to reach the ∼ 1 GHz rotation frequencies achieved with

optical rotation [103], electrically driven rotation offers precise control over the direction

and magnitude of the torque, making the quantitative measurements presented here possi-

ble. This is in contrast to optically driven rotation, where the coupling to the optical torque

depends on the geometry and birefringence of the trapped particle, as well as the exact opti-

cal properties of the laser beam used to apply the torque. The ability to measure and control

system parameters has implications for the field of optical levitation and manipulation.

The libration of an optically levitated dipole trapped in an electric field is a degree

of freedom that can be exploited for cooling and precision measurement. Libration of a

dipole trapped in a rotating electric field can be cooled by simple phase modulation of the

electric field driving the rotation. microspheres made from materials with larger dipole

moments could also be used to couple to and measure oscillating electric fields near the

rotation frequency. After the dipole coupling to an electric field is measured from the

libration frequency, torques measured from the phase lag of the rotation can be calibrated

into physical units.

Background forces arising from electric fields coupling to a microsphere dipole mo-

ment have been the limiting factor in several measurements with optically levitated mi-

crospheres [24, 25]. The techniques presented here provide new tools to control and measure
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the orientation of a microsphere’s dipole moment, which could be used to mitigate these

background forces by averaging over a rotation of the dipole. This would not be possible

with optical rotation because the dipole is not guaranteed to be orthogonal to the axis of

rotation.

We have further demonstrated the use of an optically levitated silica microsphere as a

microscopic spinning-rotor vacuum gauge. The gauge operates on the principle that the

torsional drag is proportional to the gas pressure in the vicinity of the microsphere. A

spinning microsphere driven by a rotating electric field is released from the driving field,

and the subsequent decay of angular momentum induced by torsional gas drag is observed.

The residual gas pressure is then inferred from the decay time and the calculated moment

of inertia.

Once a microsphere has been calibrated by measuring its mass, pressures within the

range 10−6 − 10−3 mbar can be determined within 10 s with a precision of ≲7%, under

the given assumptions and limited by the uncertainty in the calibration κ, which, in turn,

depends on uncertainty in the assumed microsphere density. The minimum measurable

pressure could easily be reduced by using a faster initial rotation velocity, which is limited

only by the bandwidth of the driving electronics in the current apparatus.

A second method measures the equilibrium phase lag of the electric dipole moment

relative to a driving field, which is induced by the gas drag. This method is used to cross-

check the microsphere spinning-rotor gauge against a capacitance manometer. The same

bandwidth limitations in the driving electronics limit the minimum measurable pressure of

this method to ≳10−5 mbar.

A geometric calibration factor κ related to the microsphere radius is independently de-

termined by measuring the torsional drag as a function of gas species, since the drag depends

on the momentum imparted by gas particle collisions and, thus, the molecular mass. The

torsional drag βrot has been shown to scale inversely to the thermal velocity and, thus,

βrot ∝ m
1/2
0 , with m0 being the molecular mass, validating the rotational dynamics pre-

sented here and in References [123, 124], and opening the possibility to measure the effective

molecular mass of a mixture of gases without ionization and directly in moderate vacuum.
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Chapter 6

Beyond the Standard Model:

An Introduction

As an experimentalist, the vast majority of one’s time is occupied with innumerable hard-

ware tasks, often followed by periods of data analysis that eventually inform the publication

of manuscripts and/or further hardware tasks. It is thus often the case that experimen-

talists have only effective understandings of the theoretical framework under which their

investigations take place.

It would thus be a disservice to both reader and author to drag on at length about

the details of the “new physics” that might be explored with the use of optically levitated

microspheres, but properly contextualizing the broader impact of one’s research is critical.

As such, a brief analysis is presented for a select number of theories that may yield measur-

able, but as-of-yet undetected, new interactions. In particular, these theories would result

in short-distance modifications to gravity, or other “fifth forces”, which may be accessible

with optically levitated microspheres and other precision force sensors.

6.1 The Problem With Gravity

Among fundamental interactions, gravity has the distinction of simultaneously being the

most apparent and yet the least understood. From the theoretical point of view, the universal

law of gravitation [138] and General Relativity [139] have been quite successful in describing

interactions at macroscopic scales. Under this paradigm, the force of gravity is understood

as a classical consequence of curved spacetime, which itself is induced by the presence of

145
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matter and energy, and nowhere requires a quantization or an associated field. This is in

stark contrast to the other fundamental interactions, such as electromagnetism, where our

current understanding is built on quantum field theory and the Standard Model of particle

physics. It should also be noted that the gravitational constant G is not related to any other

fundamental constants.

General Relativity, as compared to the Standard Model, suffers from limited and rudi-

mentary empirical knowledge at submillimeter length scales [140, 141], primarily due to the

strength of the gravitational interaction relative to residual electromagnetic interactions in

experimental apparatuses. At the same time, robust connections between gravitation and

quantum mechanics are still obscure, as they have remained since Einstein’s initial attempts

to develop a grand unified theory of physics. Yet, much of theoretical physics in the past

century has been driven by the assumption that gravity and General Relativity remain un-

modified all the way down to the Planck scale of lP ≈
√

Gℏ
c3

∼ 10−35 m, where G is the

gravitational constant, ℏ is the reduced Planck constant, and c is the speed of light.1 This

assumption is necessarily related to the hierarchy problem, given that Planck scale is many

orders of magnitude is so vastly different than the electroweak scale.

From an experimentalist’s perspective, this contention is not a priori problematic, but

presents an interesting avenue for research, regardless of model-dependent motivations. Sim-

ply put, if it is assumed that gravity and General Relativity work at both the shortest and the

longest scales, it stands to reason that they should be tested at both the shortest and longest

scales. For non-relativistic experimental apparatuses (the majority of those on Earth) this

generically motivates characterizations of the classical inverse square law of Newtonian grav-

ity, Fgrav ∼ 1/r2. Any measured deviations from this expectation would surely generate a

slew of theoretical models.

Furthermore, the reigning model that describes our universe at the largest scales, ΛCDM

Cosmology (see Appendix F), implies that if the equations of General Relativity are assumed

and our observations of the universe around us can be trusted, then there are two types of

constituents in the universe that we’ve never observed or detected directly, dark matter and

dark energy. We only presume their existence given that their role in ΛCDM cosmology

1It is uncertain whether the Planck scale (length: lP =
√

ℏG/c3, mass: MP =
√

ℏc/G, time:
tP =

√
ℏG/c5, energy: EP = MP c

2 ≈ 1019 GeV) is actually a fundamental scale of the universe, like
the electroweak symmetry breaking scale measured as ∼250GeV [142–145], but it does represent the scale
at which gravitational interactions should become comparable in strength to electroweak and strong inter-
actions.



6.2. PARAMETERIZING NEW FORCES 147

is consistent with the observed effects on normal matter and spacetime [146, 147]. Dark

energy is particularly mysterious in that it tends to induce expansion of spacetime, whereas

normal matter and dark matter both induce contraction, and it appears to take the form of

a “cosmological constant” term in Einstein’s field equations. Assuming ΛCDM, one can cal-

culate the expected energy density associated with the cosmological constant, often denoted

Λ, which is constrained by observations. With the energy density in hand, it is possible to

infer an associated length scale (again, see Appendix F), which is given by,

lΛ ∼ 100 µm. (6.1)

It is presumed that above this length scale, any underlying quantum field that gives rise

to Λ would be integrated out, and the effective description using a constant vacuum energy

density should be sufficient. Below the length scale lΛ, however, dynamics of a quantum

field of dark energy may become apparent [140]. Given that Λ is fundamentally tied to a

description of the universe making use of General Relativity (and thus gravity), it is natural

to consider possible new interactions as modifying gravity.

Based solely on the length-scale, optically levitated microspheres may be useful in this

regime, as lasers have wavelengths in the range 0.1µm to 10 µm, and thus diffraction-limited

spot sizes of the same order. Particles that are trappable by such lasers range in size

from approximately 0.05 µm to 20 µm [63]. Given that the optical fields can be so confined

and the tests masses (i.e. levitated dielectric microspheres) are sufficiently small, only an

appropriately sized source mass needs devising. This will be discussed in detail in Chapters 7

and 8, once we understand the possible observables and a few underlying models.

6.2 Parameterizing New Forces

Generally speaking, it’s assumed that the field or fields responsible for dark energy will

couple directly to matter (much like gravity), either via the electron, the up/down/strange

quarks, or the gluon field itself. This is one of the underlying motivations for probing

short-distance forces, wherein two objects composed of normal matter are separated by a

distance d ≤ lΛ, and any resulting force between them is observed and characterized. The

size and scaling of this force might then depend on the details of the specific theory hoping

to explain the interaction. Short-distance deviations from Newtonian gravity may also arise

from modifications to General Relativity and/or the structure of spacetime, as well as general
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particle exchange that may have no bearing on gravity itself.

Table-top experiments to probe short-distance forces, such as the one described in this

work, are usually far into the non-relativistic regime, allowing us to work with classical

potentials and simple mechanics. In this regime, it is customary to modify the inverse

square law of Newtonian gravity by introducing an additional Yukawa term with a length

scale λ. The resulting potential between two point masses can then be written as:

V (r) = −Gm1m2

r
(1 + αe−r/λ), (6.2)

with G the Newtonian constant of gravitation, m1 and m2 the gravitating masses, r their

distance, and α the strength of the new interaction relative to gravity. This expression for

a modified gravitational potential is simply a particular parameterization of possible new

interactions. If an experiment were to detect a new interaction with some value of α and

λ, further investigations will be required to verify the specific form of the new interaction,

which may, for example, be a power law of r, rather than an exponential term. This form is

chosen because a Yukawa potential is naïvely expected if there is massive particle exchange

that mediates the new interaction, and α can be either positive or negative, depending on

the theory that gives rise to the modification.

One might ask why new interactions are parameterized as modifications to the gravita-

tional potential. A simple argument is that the other fundamental interactions aside from

gravity are well described by quantum field theories, and have been experimentally verified

to extremely high precision (see References [148–150] for tests of Coulomb’s law). If it is fur-

ther recognized that laboratory experiments not intentionally involving radioactive sources

or nuclear processes will be subject only to gravity, electromagnetism, and possible new

interactions, it should be noted that electromagnetism is many orders of magnitude larger

than gravity for reasonable physical parameters.2 If the new interaction is expected to be

small (because if it wasn’t, it would have already been seen), then modifying the classical

potential of the weakest interaction makes more sense.

An interesting consequence of this parameterization is that experiments will necessarily

2This is the usual argument presented in undergraduate physics: consider two spheres with equal mass
and opposite charge, separated by some distance r. For relevancy’s sake, let m ∼ 100 pg like our silica
microspheres (see Chapter 4) and let |q| = 1 e. Then we can compare the expected gravitational and
electrostatic forces between the two as Fgrav/Fe ∼ Gm1m2/(kq1q2) ∼ 10−9. Clearly, gravitational forces are
much smaller than electromagnetic forces for reasonable parameters one might encounter in this and other
works.
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probe a limited range of the parameter λ. Assume that in any given experiment, r is

fixed to a certain value, or a limited range of values. If λ ≪ r, the interaction is heavily

suppressed, while if λ ≫ r, the exponential term approaches unity and the interaction

amounts to a re-scaling of the gravitational constant G → G(1 + α). Given that other

parameterizations are possible, experiments with λ ∼ r are advantageous, as they can

more easily distinguish between different underlying models, and are especially sensitive to

interactions and parameterizations that scale with large powers of the separation r.

6.3 A Few Examples

One of the seemingly most intuitive explanations of the cosmological constant is the existence

of a new quantum field that has not yet been directly detected [140]. New quantum fields

might also be the constituents of dark matter [151–153], or may explain the strong-CP

problem [154]. Beyond the supposition of new particles and their associated quanta, some

Beyond the Standard Model theories attempt to unify gravity and the other fundamental

forces, therefore solving the hierarchy problem, by introducing new dimensions to spacetime,

where our 4-dimensional space is embedded within the higher-dimensional space [141, 155–

158]. It may even be possible that the graviton itself (assuming a quantized gravitational

field exists), has some physical size/extent, much different than the point-like nature of

Standard Model particles [159].

In nearly all of these scenarios, there arise short-distance modifications to Newtonian

gravity, which provide a testable framework for laboratory experiments. The following

analyses closely follow References [141, 160] which describe this material in more detail and

have extensive bibliographies. There are likely additional models that can yield modifications

to Newtonian gravity and this should serve only as a selective sampling.

6.3.1 Bosonic Particle Exchange

Consider a scalar field ϕ which is assumed to couple to matter [161]. Ultra-low-mass scalar

and vector bosons may be good dark matter candidates [151, 152], providing general moti-

vation to consider boson-mediated interactions. If ϕ is to be incorporated into the Standard

Model, one can write down terms that might appear in the Lagrangian as,

me

κ
ϕf̄f, or

1

κ
ϕGa

µνG
a,µν , (6.3)
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where f is a fermionic field (like the electron, up/down/strange quarks), Ga
µν is a gluon field

with a indexing gluon color charges, κ is a coupling constant with dimensions of mass, and

the chiral-symmetry-breaking operators include the fermion mass, as one might expect from

the Standard Model [141]. If this scalar has a mass mϕ then the associated strength, α, and

length-scale, λ, of the Yukawa modification from Equation (6.2) are given by,

α =
M2

P

4πκ2
and λ =

ℏ
mϕc

, (6.4)

where MP =
√
ℏc/G is the Planck mass, and λ is simply the Compton wavelength. As a

specific case, consider a coupling to the gluon field, and recall that in the renormalization of

the Standard Model with an ultra-violet cutoff scale ΛUV, a scalar field with an interaction

term as in Equation (6.3) would expect radiative corrections of order δmϕ ≈ ΛUV/4πκ.

Imposing the condition of naturalness, one expects δmϕ ≲ mϕ. If it is further assumed this

field is related to the dark energy length-scale, λ ∼ lΛ so that mϕ ∼ 2meV/c2, and take

κ ∼ mN with mN the mass of a nucleon (given that the mass of nucleons are largely a result

of the gluon field strength and not the masses of the component quarks) this naturalness

condition implies,

ΛUV ≲ 10TeV, (6.5)

above the electroweak scale of ∼250GeV [142–145] where one might reasonably expect new

physics. Particle collider experiments, particularly those at the LHC [162, 163], are accessing

these energy scales and provide alternative and complementary techniques for any detection

of new physics.

The new physics at this energy scale may be the result of supersymmetry, wherein all the

Standard Model particles known have symmetric partners at different energy scales. This

sector of extra particles couples to the Standard Model only via gravity and other couplings

of similar strength. The supersymmetric partner of the graviton may be related to the

cosmological constant, and have an energy scale of ∼1meV [164]. Other scalar particles

of the supersymmetric sector may exhibit gravitational strength interactions with Standard

Model particles, motivating investigations of the inverse square law.

Observations of the Cosmic Microwave Background (CMB) [147] and distant super-

novas [165] suggest a cosmological model that doesn’t allow for the implied relic abundance

of a simple scalar field within the standard, but a dynamical scalar field that evolves with
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the universe may avoid this limitation [141, 166, 167]. Scalar fields that are manifest prod-

ucts of other physics (such as the QCD axion), or scalar interactions from a supersymmetric

sector, are not subject to the same cosmological constraints [154, 160].

6.3.2 Chameleons

Some scalar fields have been postulated to exhibit screening mechanisms, allowing them

to avoid detection in typical laboratory experiments or astronomical observations [168]. A

specific example is the chameleon mechanism [169, 170], in which the effective mass of the

chameleon particle (corresponding to the inverse length scale of the interaction) depends on

the local matter density, i.e. there is back-action from the metric. At cosmological distances

where the matter density is low, the chameleon field would exhibit the requisite vacuum

energy to explain the accelerating expansion of the universe [171], while at shorter distances,

the dynamics of the field and its coupling to matter can exert gravitational strength forces

that may modify the inverse square law of Newtonian gravity.

Following the initial proposal of the chameleon mechanism [169, 170], consider a field ϕ

and construct an effective potential for the field, written in natural units with ℏ = c = 1, in

the presence of matter density ρ,

Veff(ϕ) = Λ4e(Λ/ϕ)
n
+ ρeβϕ/MP

≈ Λ4

(
1 +

Λn

ϕn

)
+ ρ

βϕ

MP
,

(6.6)

where β is the coupling to matter (assumed non-relativistic and averaged over Standard

Model particle types), n is an arbitrary power, and where this potential has been explicitly

constructed assuming that chameleons are responsible for dark energy and thus includes Λ,

the cosmological constant energy scale, as the strength of the self interactions. In reality,

the self-interaction energy is a parameter of the theory, but this notation is used here to

be consistent with Chapter 7 and Reference [25]. The first exponential has been expanded

and only one arbitrary nonlinear term (1/ϕn) has been retained follow the logic in Refer-

ences [166, 168, 172]. The second exponential has been expanded since the exponent is

scaled by 1/MP and thus assumed small for any natural value of β.

A wave equation that governs this field can be derived since ∇2ϕ = ∂Veff/∂ϕ, and thus

with a given matter density, ρ, the shape and strength of the chameleon field is calculable.

With the specific profile of a chameleon field for a given experimental apparatus, one can
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then compute expected the expected force on a test mass within that field. Following the

analyses in References [172, 173], the force on a homogeneous test mass of density ρ0 can

be calculated as,

#–

F ϕ = ξ
βρ0
MP

∫
V
(∇ϕ) dV, (6.7)

where V is the volume of the test mass and ξ ≤ 1 is a screening factor, given that the test

mass itself affects the strength of the chameleon field [173]. As noted in References [160,

173–175], a chameleon-mediated interaction would look like a Yukawa-type modification to

Newtonian gravity over certain ranges of parameters and apparatus configurations. If any

new interactions were detected, special care would have to be taken to distinguish between

possible underlying theories

Previous experiments searching for violations of Newtonian gravity at or below the dark

energy length scale often employed macroscopic test masses or a conductive shield between

the probe and test masses to minimize electromagnetic backgrounds, both of which neces-

sarily limit the scale and possible effects of the chameleon field. Experiments performed in

vacuum, with no intervening matter between source and test masses, may allow detection

of a field that would otherwise be screened, where the chameleon field is just one particular

example.

6.3.3 String Theory and a Multitude of Bosons

By their very construction, string theories often result in a variety of scalar fields that ulti-

mately couple to matter. Some string theories suggest that the strength of the gravitational

interaction G ∼ 1/M2
P is not actually a constant, but instead a dynamical scalar field. In

this context the scalar field is referred to as a dilaton [176–178], and it is often postulated to

evolve with the expanding universe in order to reproduce the currently observed cosmology.

As before, modifications to the inverse square law can be expected at distances shorter than

the Compton wavelength of the scalar field.

More generally, super-symmetric string theories usually invoke the existence of multiple,

massless scalar fields called “moduli” [141, 179] that determine the coupling strength and

other parameters of the theory. However, in order for the theory to reproduce Newtonian

gravity in the appropriate limit, the moduli need to acquire mass. This is usually accom-

plished by assuming some supersymmetry-breaking mechanism, similar to the manner in
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Table 6.1: Example strengths and length scales for a set of moduli (i.e. scalar fields) from a
specific supersymmetric string theory, and with natural assumptions made about symmetry-
breaking energy scales. Reproduced from Reference [179].

Scalar field α λ [m]

ϕu 2× 10−2 2× 10−2

ϕd 8× 10−2 1× 10−2

ϕs 1 5× 10−4

ϕc 2× 10−1 7× 10−5

ϕb 2× 10−1 2× 10−5

ϕt 2× 10−1 5× 10−7

ϕg 3 8× 10−4

σ2Q 5× 10−3 4× 10−3

σ5Q 5× 10−6 1× 10−4

σ7Q 5× 10−5 1× 10−4

which other Standard Model particles obtain their masses from the Higgs field. Depend-

ing on the energy scale where the supersymmetry-breaking scale takes place, some of these

moduli can have (meV/c2)-level masses, and thus macroscopic Compton wavelengths.

The moduli manifest as scalar fields, which generate Yukawa-type modifications of the

inverse square law of the form of Equation (6.4). With one particular set of assumptions

concerning natural energy scales and other parameters, the authors of Reference [179] derive

the expected Yukawa modifications resulting from 10 distinct moduli of a particular theory,

focusing on couplings to quarks and gluon fields, which are reproduced in Table 6.1. Different

theories with different sets of assumptions may yield different expectations for the masses

of the moduli as well as their expected couplings to Standard Model particles. This should

simply serve as an illustrative example of that fact that many scalar fields are manifest in

supersymmetric string theories, so that if string theories represent a “correct” description

of our universe, then one can expect modifications to the inverse square law at some short-

distance length scale.
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6.3.4 Extra Dimensions and String Theory

String theories can also involve assuming that the universe itself is fundamentally higher

dimensional, and that our observable spacetime is just a 4-dimensional subspace of the

larger universe which may be anywhere from 5 to 11 dimensions. The extra dimensions are

usually space-like, based on their signature within a General Relativity spacetime metric,

but there are some formulations that involve extra time-like dimensions [180]. Many of these

theories are attractive in that they unify all the fundamental forces, including gravity, while

providing natural explanations of the difference in scale between the strength of gravity of

the strengths of the other fundamental forces [155–158, 181, 182].

In string theory, the known Standard Model particles are primarily limited to interactions

within a 4-dimensional subspace3 that constitutes the observable universe, although this

may not hold at all energy scales. Gravity, however, is allowed to freely propagate in

the extra dimensions since they’re fundamentally incorporated into the spacetime metric.

Some string theories suggest that the extra dimensions are compactified [155, 156], meaning

that they have finite extent and in some cases are periodic, such that motion along one

dimension eventually returns to its starting position. As one might expect, gravity behaves

fundamentally differently at distances shorter than the compactification scale, where the

new dimensions play a critical role.

Following a specific formulation [155, 156], let’s assume these extra dimensions can be

factorized within the metric, are finite and have been compactified on a torus of of radius

R∗, and that there is a fundamental mass scale associated with this theory given by M∗,

where energy and length scales can be computed accordingly. Then, at distances shorter

than R∗, the classical Newtonian potential and the gravitational constant are given by,

V (r) ≈ −G(4+n)
m1m2

r1+n
with G(4+n) =

4π

S(2+n)

(
ℏ
M∗c

)2+n c3

ℏ
, (6.8)

where S(2+n) is the (dimensionless) area of a unit (2+n)-sphere, S(2+n) = 2π(n+1)/2/Γ[(n+

1)/2]. If we take n = 0, then G(4+n) → G = ℏc/M2
P upon recognizing the fundamental scale

M∗ → MP . At distances r ≫ R∗, the gravitational flux lines cannot penetrate the extra

3These subspaces are often called “branes” in reference to the concept of a 2-dimensional membrane in
3-dimensional space, but generalized to higher dimensions. The exact type of brane we live on is subject to
the construction of theory. One example is that the Standard Model fields are localized in the 4-dimensional
throat of a 6-dimensional vortex [155]
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dimensions, and the potential takes the form

V (r) ≈ −G(4+n)
m1m2

Rn
∗

1

r
, (6.9)

with G(4+n) as before. In order for this theory to produce the expected gravitational po-

tential at long distances, it must be that G = G(4+n)R
−2
∗ . If it is assumed that M∗ ∼ mEW

where mEW ∼ 1TeV/c2 is the electroweak scale, so that this assumption solves the hierarchy

problem, then the scale of the compact dimension is given by,

R∗ ∼ 10
30
n
−17 cm×

(
1TeV/c2

mEW

)1+ 2
n

. (6.10)

Compact dimensions under this construction will manifest at short range via the ex-

change of Kaluza-Klein gravitons [141, 181, 182], which are massive spin-2 particles with an

effective range limited by the size of the extra dimensions. For n new dimensions all com-

pactified on a flat torus with same characteristic dimension R∗, one could expect Yukawa

modifications from Equation (6.2) of the form,

α =
8n

3
and λ = R∗, (6.11)

where the value of α and λ depend significantly on the underlying model, and different

compactification geometries will necessarily produce different couplings.

Similar theories of higher-dimensional gravity allow the size of the extra dimensions to

be dynamical quantities, parameterized by spin-0 fields. The linear combination of these

size-parameterizing fields is referred to as Brans-Dicke scalar [183] often dubbed the “radion”.

A massive radion in a (4 + n)-dimensional theory of gravity would mediate an additional

gravitational force with a Yukawa modification given by,

α =
n

n+ 2
and λ = R∗, (6.12)

where R∗ is still the effective size of those extra dimensions. It is also possible that for

“small” extra dimensions R∗ ≲ 1 nm, the radion can still have a Compton wavelength of the

order of 100 µm, conveniently near the dark-energy length scale.

Following the initial developments of these theories in References [155, 156], it was further

postulated that the extra dimensions may exhibit fundamentally more coupling to the usual
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dimensions within the higher-dimensional spacetime metric. These are sometimes called

“warped” dimensions, and have metrics of the form [157, 158, 184],

ds2 = f(ξi)ηµνdx
µdxν + gij(ξi)ξiξj , (6.13)

where ξi represent the i extra dimensions, f and g are functions of those dimensions with

f(ξi) called the warping factor, and ηµνdxµdxν would yield the usual invariant in the absence

of the extra, warped dimensions. The extra dimensions ξi can be compact [157], or infinite

in extent [158, 184], and the specifics of the warping can greatly alter the masses, Compton

wavelengths, and couplings of the Kaluza-Klein graviton modes and the radion. Generally

speaking, it’s expected that interactions between the radion of the Kaluza-Klein modes and

normal matter would result in modifications to the inverse square law at separations shorter

than the Compton wavelength.

6.3.5 Massive Gravitons

In General Relativity, gravitational waves or any perturbations of the spacetime metric are

theorized to travel at the speed of light [185]. If a quantum theory of gravity is to be

constructed, this would naturally lead to the assumption that the force carrying particle,

the graviton, should be massless, so that the gravitational interaction is mediated at the

speed of light. However, breaking this assumption and allowing the graviton to have a mass

has interesting consequences, including possible modifications to the inverse square law at

short-distance. Massive gravity is discussed in great detail in the Reviews [186, 187], and

has received significantly increased attention in the last decade.

Some of the first attempts to construct a theory of massive gravitons had issues with

the production of “ghosts”, or particle states that are considered unphysical, for example,

states with a negative norm or violations of Lorentz-invariance [188]. Ghost-free solutions

were developed in recent years [189], which have in turn lead to theories of bigravity, which

include two gravitons: one massive and one massless [153, 190]. This lifts a number of

phenomenological constraints, for example that a single massive graviton should have an

exceedingly small mass so as to reliably reproduce the equations of General Relativity in

the regime where they have been tested with great precision.

As with many of the scalar fields and bosonic particles discussed in previous sections,

the massive graviton would modify the strength of gravity at distances around the Compton
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wavelength. Assume (1/MG) denotes the energy scale of the coupling between matter fields

and the massive graviton, where the inverse of the usual Planck mass (1/MP ) denotes the

energy scale of the coupling between matter fields and the massless graviton, and apply a

weak field approximation, then Yukawa-type modifications to the inverse square law would

be expected to have the form [153],

α =
4M2

P

3MG
and λ =

ℏ
mc

, (6.14)

with m the mass of the massive graviton, and λ simply the Compton wavelength. The

authors of Reference [153] go further and even suggest that such massive gravitons could be

dark matter candidates given certain assumptions related to their relic abundance, which in

turn puts constraints on acceptable masses m and coupling strengths M−1
G .

6.3.6 Fat Gravitons

Throughout the Standard Model and General Relativity is the implicit assumption of local-

ity, which, in part, conceptualizes particle as point-like. This isn’t the usual statement of the

principle of locality, but it is nevertheless a useful viewpoint. If this assumption is relaxed

and the graviton is allowed to have a macroscopic extent lg and soft couplings to heavy

Standard Model particles [159], then this has interesting implications. Physics occurring at

length-scales much smaller than the size of the graviton would, in a sense, be invisible to

the gravity, and the size of the gravity can explain the cosmological constant.

Importantly for our research pursuits, at distances d < lg, the force of Newtonian gravity

between two masses composed of normal matter falls off sharply. The modified gravitational

force between two point masses m1 and m2 would take the form [159, 160],

FG,fat =
Gm1m2

r2

(
1− e−3kr/lg

)
, (6.15)

where k is a factor of order unity. Detecting a decrease in the expected gravitational force

between two objects as they get closer would be a clear signature of new physics.

6.4 Previous Searches for New Interactions

Astronomical observations combined with terrestrial and laboratory based experiments have

placed limits on Yukawa modifications of the inverse square law of Newtonian gravity over
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roughly 20 orders of magnitude of the length scale λ, with the most sensitive probe coming

from lunar laser ranging measurements at distances of ∼109m [191, 192].4 At this length

scale, Yukawa-type modifications of the inverse square law have been excluded for α ≳

5× 10−11 based on the anomalous precession of the moon’s orbit, while longer length scales

have been tested by examining the orbits of planets within our solar system and intermediate

length scales between the Earth-moon distance and laboratory scales have been tested by

satellite-based experiments [141]. At much shorter length scales in the submillimeter regime,

the sensitivity of apparatuses to gravitational-strength interactions falls off sharply, and the

existing limits are correspondingly much weaker. At λ ∼ 10 µm, Yukawa-type modifications

have only been excluded for α ≳ 5×103, and it gets much worse at λ ∼ 1 µm where α ≳ 107.

For λ ≲ 10 nm, constraints are essentially non-existent and are derived from a variety of

scattering and collider experiments. The landscape of current measurements is shown in

Figure 6.1.

Traditionally, short-distance gravitational interactions have been experimentally investi-

gated using sophisticated torsion balances [200] which establish some of the most stringent

bounds on deviation from the inverse square law at both the meter scale [201–203] and

the submillimeter scale [141, 193, 195, 197–199, 204]. Alternative techniques have been

developed using nanotechnology to mount test masses at the ends of microcantilevers [194,

196, 205]. In essentially all realizations of short-distance force sensing, the most significant

background results from residual electromagnetic interactions between test masses, source

masses, and external fields. Adequate environmental shielding to prevent stray fields from

interfering with the experiment is necessary, as well as dedicated electromagnetic shielding

between the gravitating masses (or a sophisticated understanding of the background forces

present) in order to avoid accidentally measuring the electrical properties of the surfaces

rather than any of the interactions we’re actually interested in.

Generally, all measurements within this field are limited by systematic effects, such as

the reliability and reproducibility (or lack thereof) in the positioning and alignment of the

macroscopic objects involved, especially given the small separations required for competitive

measurements. Another concern of significant note is the occasional assumption that oscil-

lators with high quality-factor, Q ≳ 103, don’t fluctuate with temperature when operated

at T ∼ 300K without explicit temperature control. Even small fluctuations away from an

4This experiment represents an indirect validation of the moon landings in the late 1960s and early 1970s,
given that lunar laser ranging is only possible if the Apollo astronauts placed retroreflectors on the surface
of the moon, as opposed to a Hollywood studio in Burbank (as the conspiracy might imply).
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Figure 6.1: Parameter space of Yukawa-type, α − λ, modifications to gravity, including
current experimental constraints. Gravitational strength interactions, α ≈ 1, are indicated
with a dashed line. Adapted from References [141, 160], with significant additions in the
submillimeter regime (the region of interest to this work) from more recent publications [193–
199].
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assumed resonance can significantly limit sensitivity, which in turn results in over-zealous

limit estimation if not properly accounted for. Hence, experimental progress calls for new

techniques with different attributes and systematics that may eventually contribute to ro-

bust discoveries. Short-distance force sensing with optically levitated microspheres offers

just such a technique.

6.4.1 Torsion Balances

One of the first tests of the inverse square law was performed by Cavendish in 1797, where

he used a large torsion balance in a program he dubbed “weighing the world”. A 2m wooden

rod was suspended by a long wire (the torsional spring), with two spherical lead test masses

(roughly 0.75 kg) attached to either end. Two much larger lead spheres (roughly 150 kg)

were positioned such that their gravitational interaction with the small spheres produced a

net torque on the wire-suspended rod. The torque is transduced to an angular deflection

by the torsion balance, which can be then be observed. By comparing the strength of

this interaction to the weight of the small spheres (i.e. the strength of the gravitational

interaction between the Earth and the test masses), he was able to use Newton’s Law of

Universal Gravitation to calculate the density of the Earth [200]. Reinterpretations of his

result as a direct calculation of G yield values within a few percent of the currently accepted

value of G (from CODATA [206] which averages over distinct measurements, even in the

presence of tension).

Since the days of Cavendish, the technology of torsion balances has improved signifi-

cantly. Tests of the inverse square law at scales λ ∼ 1m have been made using “large”

torsion balances with a variety of geometries [201–203], although we will focus on newer

measurements using more compact torsion balances [194, 197–199, 204] that access the

shorter length scales, λ ≲ 1mm, of interest to our scientific program. Indeed, if the tor-

sion balance is made sufficiently compact, test and source mass separations of a few hundred

nanometers are also possible, allowing these devices to probe even shorter length scales [195].

In one of these newer iterations [198], the torsion balance consists of a metallic disk

serving as the test mass (r ∼ 2.5 cm), which is suspended from a wire serving as the torsion

spring, with a regular, 120-fold symmetric azimuthal pattern of voids on the bottom/downward-

facing side of the disk. A second, identical disk serves as the source mass, such that when

placed below the test mass, with the voids now on the top/upward-facing side, rotation of

the source mass relative to the test mass produces an oscillating torque on the test mass
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Figure 6.2: Schematic depiction of the torsion balance described by Reference [198]. The
test and source masses are patterned platinum foils adhered to a glass substrate, with the
epoxy serving as the low-density component of the modulation. The components are all gold-
coated to reduce electrostatic interactions. A stationary electrostatic shield (not depicted)
sits between the source and test masses to shield anomalous backgrounds. As the source mass
rotates at angular frequency ω, an oscillating gravitational torque, plus any new interactions,
causes the test mass assembly to torsionally oscillate at nω and mω where n and m are
the number of full periods in the two distinct density modulations present. The density
modulations depicted have 8-fold and 40-fold symmetry, while the actual device has 18-fold
and 120-fold symmetry.
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as the voids rotate past one another. A schematic depiction of this measurement apparatus

is shown in Figure 6.2. The test and source masses are brought as close as ∼50 µm, quite

remarkable considering their macroscopic size of ∼5 cm . This is currently the most sensitive

apparatus to gravitational-strength interactions between 10 µm and 100 µm.

Another scheme involves a more traditional-looking torsion balance [199], in which test

masses are attached to the ends of a rod, which is in turn suspended by a wire serving as the

torsional spring. A source mass is constructed by placing rectangular tungsten masses in a

regular azimuthal pattern with 8-fold symmetry on a glass disk, whose diameter matches

the length of the rod. With the source mass disk rotating in a vertical plane (horizontally

oriented rotation axis) and positioned such that the rod lies along the face of the disk, the

individual tungsten source masses periodically pass the test masses and induce an oscillating

torque on the torsion balance, which can be deterministically enhanced by displacing the

center of the disk’s rotation from the center of the test mass rod. A clever positioning of

displaced compensation masses serves to nearly cancel the Newtonian component of the

torque, allowing for a “near-null” measurement. Unlike Reference [198], where the torsion

balance was allowed to free-oscillate about a natural equilibrium position, this second scheme

requires the use of active feedback to maintain the pendulum about its equilibrium due to

anomalous torques from contact potentials.

In both experiments mentioned [198, 199], a thin, conductive membrane is suspended

between the source and test masses in order to suppress electromagnetic backgrounds, al-

though this is not a requirement as demonstrated by the success of other works [195]. The

sensitivity of the two apparatuses is such that they can easily resolve Newtonian gravity

(α ∼ 1), providing a robust model to which they can compare their data. Deviations from

this model are then constrained with profile-likelihood techniques, yielding the reported

exclusions shown in Figure 6.1.

6.4.2 Microcantilevers

The experiments making use of torsion balances and discussed in the previous section involve

generating oscillating torques, where the frequency of the oscillation is intentionally tuned

away from the resonance of the torsion balance itself.5 Operating on-resonance is generically

difficult, especially in the case of oscillators with high quality-factor, as small fluctuations

5For small angles, the motion of a torsion pendulum is that of a damped harmonic oscillator, and thus
Appendix B is applicable.
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Figure 6.3: Schematic depiction of the microcantilever apparatus described by Refer-
ence [194]. The test mass consists of a solid gold block mounted to the end of a silicon
cantilever, with some loaded resonant frequency ω0. A nanofabricated chip with a regular
25 µm density modulation serves as the source mass, and is driven to oscillate n periods
of the modulation at a frequency ω such that ω0 = nω. A stationary electrostatic shield
(not depicted) sits between the source and test masses to shield anomalous backgrounds.
The high-density gold portion is also continuous, allow a current to be driven through it for
electromagnetic calibrations.
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of environmental conditions such as temperature can alter the resonant frequency and push

the measurement off-resonance, significantly limiting sensitivity. However, if environmental

conditions can be robustly controlled while the resonant frequency is simultaneously moni-

tored, operating with drive forces on-resonance can offer huge improvements in sensitivity,

since the system response is amplified by the quality factor Q ∼ ω0/γ, relative to the low-

frequency response, where ω0 is the resonant frequency of the system and γ is the damping

(see Appendix B).

This is generally the approach of a class of experiments using microcantilevers [194, 205],

wherein a homogeneous test mass is mounted to a cantilever, then subjected to possible new

interactions from a source mass, such that the new interactions excite motion at the test-

mass-loaded-cantilever’s resonant frequency, ω0. Essentially, a source mass is designed with

some spatial periodicity in mass density, such as alternating regions of gold and silicon [194],

or alternating regions of tungsten and indium antimonide [205]. The source mass is then

made to rotate or oscillate at some frequency ω such that n full periods of the density

modulation are exposed to the test mass in one period of the rotation or oscillation, exciting

the test mass at nω. By actively monitoring the resonant frequency of the loaded cantilever,

which can fluctuate with environmental conditions, ω can be continuously tuned such that

nω = ω0. A schematic depiction of this type of measurement is shown in Figure 6.3.

Micro- and nanofabrication techniques allow for a wide range of cantilever dimensions,

and thus resonant frequencies, although the most common type is a rectangular prism akin

to a diving board, where one end is allowed to free oscillate, while the other is rigidly

connected to a handle. Resonant frequencies can range anywhere from 100Hz to 1×105Hz,

but this number is reduced significantly when a test mass is attached to the free end, and

requires robust and continuous characterization for a proper experiment.

6.5 Extending the Experimental Reach

At submillimeter length scales, the most sensitive measurements of gravitational forces come

from a number of torsion balance experiments. At a few specific values of λ in this regime,

microcantilever experiments approach the same sensitivity as the best torsion balances, but

do not surpass them. Thus, almost the entirety of the α−λ parameter space is dominated by

a single type of measurement framework. For robust characterizations of gravity, as well as
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any eventual discoveries of new physics, multiple approaches to the same task provide nec-

essary cross-validation. Optically levitated microspheres are one such alternative approach,

subject to entirely different set of systematic effects.
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Chapter 7

Search for Screened Interactions:

The Chameleon Field

The content of this chapter has been adapted from Reference [25], for which the author was

a primary contributor. Apparatus and generic experimental method descriptions have been

removed, appealing to Chapter 2 of this thesis instead, while some other sections have been

expanded for completeness.

7.1 Introduction

It might be possible to detect the presence of a scalar field constituting dark energy by

searching for new interactions between objects separated by distances below the dark en-

ergy length scale [140, 168, 204, 207]. In many cases, the resulting forces can be substantially

larger than Newtonian gravity at short distances [168, 208]. The most sensitive previous

searches for violations of Newtonian gravity at or below the dark energy length scale em-

ployed macroscopic test masses or a conductive shield between the probe and test masses

to minimize electromagnetic backgrounds [160, 194, 195, 204, 209].

Although these experiments place stringent constraints on deviations from Newtonian

gravity, it is possible to construct theories of dark energy involving new forces that could

have avoided detection due to the geometry and scale of previous experiments [168, 173, 175,

208]. For these screened interactions, recent searches using microscopic test masses such as

atoms [172, 210] or neutrons [211–213] often provide the strongest constraints.

167
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Several screening mechanisms have been proposed to evade existing experimental con-

straints on scalar interactions in the laboratory and solar system [168]. A specific example

is the chameleon mechanism [169, 170], in which the effective mass of the chameleon particle

(corresponding to the inverse length scale of the interaction) depends on the local matter

density. At cosmological distances where the matter density is low, the chameleon field

would constitute the vacuum energy density necessary to explain the accelerating expansion

of the universe [171] (see Chapter 6. However, most laboratory experiments are carried out

in regions of high matter density, where the forces arising from the chameleon interaction

are suppressed.

This work presents a search for screened interactions below the dark energy length scale

using optically levitated µm-size dielectric spheres as test masses. Levitated microspheres in

high vacuum [21, 32, 53, 54, 56, 57, 62, 80, 214] can be used to detect forces ≪ 10−18 N [24,

56, 60, 215, 216], and in many cases their small size avoids screening effects.

7.2 Experimental Setup

The test masses used in this work consist of amorphous silica microspheres with radius

r = 2.35 µm and mass m = 0.13 ng [76]1 levitated in a single-beam, upward-propagating

1064 nm laser trap [7, 24]. The radiation pressure from the laser counters Earth’s gravity

and acts as an optical spring pulling the microsphere to the center of the Gaussian beam [6].

The resonant frequencies of the trap are ∼ 150 Hz for the 2 degrees-of-freedom orthogonal

to the Earth’s gravity and ∼ 100 Hz for the degree-of-freedom parallel to Earth’s gravity.

The position of the microsphere is measured by focusing secondary 650 nm Gaussian laser

beams on the microsphere and imaging the pattern of scattered light onto a position-sensitive

photodiode (PSPD). For small displacements from the center of the trap, the PSPD produces

a differential current that is a linear function of the position of the microsphere.

When the microspheres are loaded into the optical trap, they typically have an electric

charge of ∼ 100e [24]. The charge is measured by monitoring the response to an oscillating

electric field. Microspheres are discharged with UV radiation from a Xenon flash-lamp. As

shown in [24], clear charge quantization can be observed at the end of the discharging cycle,

providing a force calibration for the system.

1At the time of initial publication [25], the precision mass measurement (see Chapter 4) had not been per-
formed, so the results presented here were limited by systematic uncertainty from the assumed microsphere
radius and density.
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Figure 7.1: (left) Schematic of the optical trap and shielding electrodes. The electrode in
the foreground is removed to show the inside of the trap. (right) Zoom in on the region near
the trap. A 4.7 µm diameter microsphere is suspended at the focus of an upward propagat-
ing laser beam. The 10 µm thick Au-coated Si cantilever is positioned at 20 µm to 200 µm
separations from the microsphere and oscillated in the z direction using a nanopositioning
stage. (This figure is nearly identical to Figure 3.1, aside from a redefinition of the coordi-
nate system. Both figures are included in their respective chapters to maintain clarity and
consistency.)

The microspheres are levitated inside of a vacuum chamber to reduce the force noise

coming from collisions with residual gas. Due to reduced gas damping, the trap becomes

unstable below 0.05 mbar. To stabilize the trap, active feedback is applied by measuring

the microsphere’s position and modulating the position of the trap. Measurements are

performed at pressures below 10−6 mbar where the noise for force measurement is limited

to 2 × 10−17 N Hz−1/2 by imaging noise. The optical setup and calibration methods are

improved versions of those discussed in [24].

A schematic view of the apparatus is shown in Figure 7.1 where a coordinate system

is defined. The microsphere coupling is probed with a silicon cantilever with dimensions

500 µm× 2000 µm× 10 µm and a 500 µm thick handle, fabricated from a silicon on insulator

(SOI) wafer using optical photolithography and plasma etching. The 10 µm dimension is

oriented so that the cantilever clears the Gaussian beam waist of the laser and the 500 µm

dimension is approximately centered on the trap in the x direction. A 200 nm gold shielding

layer was evaporated onto the cantilever to minimize its electrostatic interactions with the

microsphere. The cantilever is mounted on a 3-axis nanopositioning stage used to control
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its spacing from the microsphere with a precision of 3 nm and a travel of 80 µm. The trap

and cantilever are electrically shielded inside a cube consisting of six gold-plated electrodes

separated by 4mm, whose potentials are controlled by external digital-to-analog converters

(DACs). The nanopositioning stage is mounted on a piezoelectric motor driven stage with

12 mm travel in the z direction to provide coarse positioning.

7.3 Dipole Response Measurement

To measure electrostatic interactions between the cantilever and the microsphere, each

shielding electrode was set to a nominal potential of 0 V while the cantilever was biased

to a non-zero potential. The z position of the nanopositioning stage was driven with an

18.3 Hz sine wave over its full 80 µm travel. The microspheres were aligned with the center

of the cantilever in the y direction by determining the position at which the maximum elec-

trostatic response was seen as the cantilever was swept in the z direction at fixed bias. The

microsphere and stage positions were recorded in 50 s long integrations. Data were acquired

for coarse stage positions with closest approach of 20, 60, 100, and 150 µm. This procedure

was repeated for each of three microspheres considered in this work.

To eliminate low frequency drifts, the microsphere positions were first mean subtracted.

The data were then averaged in 10 µm cantilever position bins and calibrated to force units

using the single-charge-step calibration discussed previously. Data at neighboring coarse-

stage positions were matched in the 30 µm to 40 µm overlap region. The measured electro-

static force versus spacing between the cantilever and the microsphere is shown in Figure 7.2.

Although electrically neutral microspheres are used, they still contain ∼ 1014 charges

and interact primarily as electric dipoles. The force on a microsphere with dipole moment
#–p is given by

#–

F = ( #–p ·∇)
#–

E [4], where #–p = #–p 0+α
#–

E consists of a permanent dipole, #–p 0, and

an induced dipole, α
#–

E, for polarizability α. The latter term incorporates any dipole induced

by an electric field, including the linear dielectric response as well as any non-zero surface

charge mobility. Figure 7.2 shows a fit to the model
#–

F ·ẑ ≡ Fb(z) = (px∂x+py∂y+pz∂z)Ez ≈
p0z∂zEz + αEz∂zEz.

A finite-element method (FEM) was used to solve for
#–

E within the geometry of the trap-

ping region. Dipole moments and polarizabilities were extracted by fitting the microsphere

responses at non-zero cantilever bias to Fb(z). The results of this fit for each microsphere are
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Figure 7.2: Measured response of microsphere #1 versus distance from the cantilever face
as the cantilever is swept in z with a constant bias of 1,2,3,4, and 5 V. The data points are
shown as dots and the best fit model as solid lines. (inset) Amplitude of the fit component
∝ ∂zEz (top) and the fit component ∝ Ez∂zEz (bottom). Fits to the expected linear and
quadratic dependence on the voltage are also shown (solid lines).

Table 7.1: Dipole moments and polarizabilities measured for each microsphere.

Microsphere p0z [e µm] α/α0

#1 151 ± 6 0.21 ± 0.13
#2 89 ± 10 0.00 ± 0.33
#3 192 ± 30 0.25 ± 0.14
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shown in Table 7.1. The dipole moments are measured in units of e µm and the polarizabil-

ities are reported relative to α0 = 3ϵ0

(
ϵr−1
ϵr+2

)
(43πr

3) assuming ϵr ∼ 3 and r = 2.35 µm. The

reported values of polarizability, which are smaller than α0, could arise from systematics in

the determination of a small induced dipole on top of a much larger permanent dipole, an

unexpectedly low value of ϵr, or a smaller than expected volume.

7.4 Probing for Chameleons

Following the measurement of the electrostatic interaction at a given coarse stage position,

the cantilever was set to a nominal potential of 0 V, and twenty additional 50 s long in-

tegrations were acquired to search for new screened interactions. This procedure was then

repeated to obtain three 1000 s measurements at each coarse stage position in order to

quantify time dependent variation in the measured response over a period of several hours.

The standard deviation of the repeated measurements at each position bin was included as

an additional systematic error.

The resulting data can be used to set constraints on new screened interactions at dis-

tances of the order of the dark energy length scale, with a sensitivity that is limited by the

presence of the residual electrostatic backgrounds. As a concrete example, we consider the

presence of a non-relativistic, steady-state chameleon field, ϕ, that mediates a force between

the microsphere and cantilever. Following [172, 173, 208], we assume an inverse power law

form of the effective potential,

Veff(ϕ) = Λ4

[
1 +

(
Λ

ϕ

)n]
+

βρ

MPl
ϕ, (7.1)

where Λ is the scale of the chameleon self interaction, often chosen at the dark energy scale

Λ ∼ 2.4 meV. The coupling to matter of density ρ is determined by the scale M = MPl/β

where MPl is the reduced Planck mass and β is unitless. Although other power laws are

possible, n = 1 was chosen as a characteristic example for this search.

Similar to the electric field calculation described above, an FEM was employed to solve

the non-linear equation of motion ∇2ϕ = ∂ϕVeff in the geometry described previously. The

residual gas pressure of ∼ 10−6 mbar was included, but has negligible effect on ϕ for values of

the matter coupling considered in this work. Boundary conditions were set to the equilibrium

value of the field within the cantilever and electrodes, following the detailed treatment of
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Figure 7.3: An example FEA calculation of the chameleon field. A cross-section in the
yz-plane is shown, so that the cantilever appears edge-on and extends into and out-of the
page. The residual vacuum pressure of ∼10−6 mbar does not affect the maximum value
of the field here, which is instead limited by the finite size of the vacuum chamber, as the
boundary condition enforces a low value at the vacuum-matter interface

matter-vacuum interfaces in [172]. An example field calculation is shown in Figure 7.3,

where the field has been computed assuming Λ = 2.4meV and β ≈ 105.

The resulting chameleon force on a microsphere in the z direction was calculated as

Fc(z, β, λ) = λ(βρ/MPl)

∫
V
(∂zϕ) dV, (7.2)

where ρ and V are the density and volume of the microsphere, and λ is a screening factor [172,

173]. In the region of parameter space where ρr2 < 3MPlϕ/β, the microsphere is unscreened

and λ = 1. However, when β becomes sufficiently large, the force on the microsphere is

suppressed by λ < 1 [172, 173].
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The measured force versus position for each of the three microspheres is shown in Fig-

ure 7.4. A small residual force ≲ 10−16 N can be seen for each microsphere. This response

is consistent with electrostatic forces resulting from the permanent electric dipole moment

of the microspheres coupling to the electric field produced by potential differences between

the cantilever and shielding electrodes of ≲ 30 mV. Contact potentials of this scale are ex-

pected to arise between connections to the electrodes in the vacuum chamber and external

electronics.

To search for possible new interactions, the data for each microsphere were fit to a model

F (z) = AcFc(z, β,Λ)+AbFb(z) +A0, where Fb(z) is the shape of the empirical background

measured for each microsphere when the cantilever was biased to 5 V, Ab is the unknown

electrostatic background amplitude due to residual contact potentials on the electrodes, and

A0 accounts for the arbitrary offset subtracted from the data at each coarse stage position.

Ac, the normalization of the chameleon force, was constrained in the fit by the following

systematics. The microsphere mass was not directly measured, but the radius of the spheres

was determined by the manufacturer to be (2.50±0.24) µm, leading to a 35% uncertainty on

the chameleon force.2 Fits of the calibration data to the electric field simulations indicate

that the microsphere was centered in y relative to the cantilever within 4 µm, leading to an

uncertainty on the amplitude of the chameleon force of 1.8%. The z position of the coarse

stage was determined from microscope images of the cantilever to ≲ 10 µm, at each coarse

stage setting. Using the positions and uncertainties determined from the calibration images,

the coarse stage positions were further refined by allowing z-position offsets to float at each

coarse stage position in the electrostatic fit. The best fit positions were used in the final

chameleon fit, and their uncertainties contribute an additional systematic error of 6%. All

errors were added in quadrature for a total systematic error of 36% on Ac, dominated by

the uncertainty in the microsphere masses.

At each value of Λ, the profile of the negative log likelihood (NLL) was calculated by

minimizing the NLL for the fit at each value of β over the nuisance parameters Ac (including

its Gaussian constraint), Ab and A0. The 95% confidence interval for β was determined from

the combined profile from all three microspheres following Wilks’ theorem [218, 219]. This

was done assuming that 2NLL follows a χ2 distribution with one degree-of-freedom (DOF).

The χ2 statistic at the best fit point and for the background only model indicates that both

2Again, this uncertainty is large, as the precision mass measurement (see Chapter 4) had not been
performed.
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Figure 7.4: Measured response for microspheres #1 (top), #2 (middle), and #3 (bottom)
versus distance from the cantilever face as the cantilever is swept in z with a nominal bias
of 0 V. The best fit electrostatic background-only model (dashed) and the amplitude of a
chameleon force at the 95% CL upper limit for Λ = 10 meV (solid) are also shown.
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Figure 7.5: Limits on Λ versus 1/β =M/MPl for the chameleon model discussed in the text.
The 95% CL exclusion limits from this search are denoted by the dark (gray) region. Recent
constraints from atom interferometry are shown by the light (blue) region [172, 210]. The
horizontal line indicates Λ = 2.4 meV. Limits from neutron interferometry [211–213] and
from the Eöt-Wash torsion balance experiment [175, 204, 217] are denoted by the hatched
regions. These limits are shown only in the restricted regions of parameter space considered
in Refs [211] and [175].
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provide a good fit to the data. At the best fit point, χ2 = 97.8 for 87 DOF, while for

the background only model χ2 = 98.9 for 88 DOF. For all Λ, the data are consistent with

the background-only model at the 95% confidence level (CL). The background-only fits are

shown in Figure 7.4, together with the amplitude of a chameleon force at the 95% CL upper

limit.

The resulting limits on 1/β =M/MPl are shown in Figure 7.5 and compared to existing

limits on chameleon interactions. Due to the self-screening of the microsphere at large values

of β, these results are not able to constrain forces arising from chameleons for Λ = 2.4 meV

given current backgrounds. However, at values of Λ > 4.9 meV, the self-screening is reduced,

and these data are able to constrain chameleon interactions. These bounds are within

a factor of 3 of the best existing constraints from atom interferometry using an entirely

independent technique.

7.5 Conclusion

The analysis presented here constrains screened interactions that would produce a force be-

tween the cantilever and the microsphere greater than 0.1 fN at separations greater than

20 µm. This search is limited by backgrounds from fixed dipole moments in the microspheres

coupling to electric fields caused by contact potentials. One method for reducing such back-

grounds is to spin the microspheres by applying an optical [52] or electrostatic torque [220].

It might be possible to anneal the microspheres in situ [132] to increase the rate at which

separated charges within the microspheres recombine. Finally, commercially available mi-

crospheres made from different materials might have smaller permanent dipole moments.

Some combination of these techniques may be used in the future to enhance the sensitivity

reached here.

These results provide the first search for interactions below the dark energy length scale

using isolated mesoscopic objects separated by mesoscopic distances without an intervening

electrostatic shield. This experimental technique is complementary to previous searches and

could be sensitive to interactions that have evaded detection to date. The determination

of the electric field near the cantilever and measurement of the interaction of electrically

neutral silica microspheres with these fields provides important constraints on the expected

backgrounds for future searches using similar methods. Future work will feature a search

optimized for unscreened Yukawa interactions.
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Chapter 8

Search for non-Newtonian

Interactions that Couple to Mass

The content of this chapter has been adapted from Reference [29], for which the author

was a primary contributor. Apparatus and generic experimental method descriptions have

been removed, appealing to Reference [37] for apparatus details, and occasionally Chapter 2

of this thesis for general statements. Text includes supplementary material prepared for

journal submission that is not in the original arXiv posting (at the time of writing).

Recall from Chapter 6 that it is customary to modify the inverse square law of Newtonian

gravity by introducing an additional Yukawa potential with a length scale λ. The resulting

potential between two point masses can be written as:

V (r) = −Gm1m2

r
(1 + αe−r/λ), (8.1)

with G the Newtonian constant of gravitation, m1 and m2 the gravitating masses, r their

distance, and α the relative magnitude of the new interaction. A few possible examples

of theories that would result in deviations from Newtonian gravity at short-distance were

detailed in Chapter 6, although investigating gravity and gravitational-strength forces at

short-distance has intrinsic value regardless.

In the present work, we describe the first investigation of the inverse square law in the

1 < λ < 100 µm range using an optical tweezer in vacuum, where radiation pressure is

used to counter the Earth’s gravity and to provide the restoring force against which the

interaction is compared. As first discussed in [215], the motion of an optically levitated

179
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silica microsphere [1, 7] is studied to infer its coupling with an attractor system in which

regions of different mass density (silicon and gold) are alternated on a microscopic scale.

To our knowledge, this is the search using the smallest objects to both source and sense

a new interaction or modified gravity. So far, experiments probing the micrometer regime

have been mainly conducted with greater separations between the source and the test mass,

and/or using substantially larger test and source masses. In this study, the separation

between microsphere and attractor system, the scale of the test mass, and the attractor

system density modulation, are all matched to the length scale λ of the interaction. This

results in measurements with broader applicability, including to non-Newtonian potentials

that cannot be described by the form in Equation (8.1).

8.1 The Experiment

The microsphere, acting as a force sensor, is isolated from the environment so that its center

of mass motion can be reduced to very low effective temperatures [36] in an otherwise room

temperature setup. The charge state of the microsphere can be controlled with exceptional

accuracy (see Chapter 2) to provide an empirical force calibration and, during inverse square

law test measurements, ensure overall neutrality. Directly measuring the force vector on

the microsphere (see Chapter 3) provides more dimensions to understand backgrounds and

provides sensitivity to the sign of α, in contrast to experiments only sensitive to a deviation

from |α| = 0 [194–196]. Finally, many methods developed in quantum optics can be applied

to this technique in the future, with the potential for substantial advances in an all important

problem of experimental physics.

The overall apparatus layout, microsphere trapping, force calibration, charge neutraliza-

tion, metrology, and the force sensitivity achieved, are described in detail in Reference [37].1

Briefly, the central part of the system, shown in Figure 8.1, is a (7.56 ± 0.19) µm diame-

ter silica microsphere [88] trapped in an upward-propagating, single-beam optical tweezer,

formed by 1064 nm light focused down to a waist size of 3.2 µm by an off-axis parabolic

mirror with a focal length of 5 cm. The mass and density of the microsphere are estimated

to be m = 414± 15 pg and ρ = 1.83± 0.15 g/cm3 from a combination of measurements in

situ for another microsphere from the same batch, following the method in Reference [19],

1The revised apparatus is similar to that described in Chapter 2 of this work, with major improvements
to the auxiliary optics and a modified optical trap using focusing mirrors instead of lens.
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Figure 8.1: (a) Central portion of the experimental setup: a microsphere is trapped in
an optical tweezer. A stationary shield centered about the trapped microsphere, with the
closest surface within a few microns of the microsphere, and the attractor system is behind it.
(b) Scanning electron microscope (SEM) image of the attractor system. The dark (bright)
regions correspond to silicon (gold). (c) SEM image of the shield, viewed at a 40◦ angle to
highlight the three-dimensional structure, with the vertical wall to the left.

and manufacturer’s specifications [88].

The x and y positions of the microsphere are measured by interfering the recollimated

forward-scattered light with a reference wavefront and projecting the result onto a quad-

rant photodiode (QPD). The z position of the microsphere is measured by interfering the

light retroreflected by the microsphere with another reference wavefront, whereby motion

along z produces a change in the path length and thus in the phase of the retroreflected

light. Both interference measurements make use of heterodyne detection, in which the ref-

erence wavefronts are frequency-shifted by −125 kHz relative to the trapping beam. The

photocurrent signals are then amplified, digitized, and digitally demodulated. The resulting

measurements of the x, y, and z degrees of freedom are used both for real-time feedback

control and offline analysis.

The trapping region is surrounded by six identical electrodes resulting in a cubic cavity

in which the microsphere is shielded from external electric fields. The electrodes have holes

for optical and mechanical access from six directions, and they can be individually biased

to control translational and rotational degrees of freedom of the microsphere. This feature
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is used to calibrate the force sensitivity of the system by adding a well-defined charge to

the microsphere and driving its motion with AC fields applied to the three pairs of opposite

electrodes [24–27, 37]. These manipulations are generally done with the attractor system

and shield in their retracted position, so that the applied electric field at the microsphere

location is well understood and approximately uniform.

Prior to the inverse square law measurements, a neutralized microsphere is driven to

rotate at 6 kHz, by coupling a rotating electric field to the permanent electric dipole moment

in the microsphere [28, 38] (see Chapter 5). This results in a lower and more consistent force

noise. At the 4×10−7 mbar vacuum employed here, the microsphere’s angular velocity decays

exponentially with a time constant >8 hours [28] in the absence of a driving field and while

inverse square law measurements are performed. The natural oscillation frequency of the

trapped microsphere is ∼380 Hz for both x and y, while feedback in the z direction results

in a similar trapping frequency (cf. the optical spring constant without the feedback in the

z direction corresponds to ∼30 Hz). Slow drifts in the z position, which may be attributed

to changes in the optical path, are corrected at ∼10 s intervals by an auxiliary measurement

performed using a camera-based microscope installed at a side-view port.

The attractor system (Figure 8.1b) is a cantilever device, nanofabricated in silicon and

measuring 500 µm × 475 µm × 9 µm in the x, y, z directions, and supported by a

thick silicon handle [69]. The front portion of the attractor system, closest to the trapped

microsphere, is patterned with nine rectangular trenches filled with gold, regularly spaced

along the y axis with a pitch of 50 µm, measuring 25 (100) µm in the y (x) direction to

create the required density modulation.

Although the attractor system is coated with 150 nm of gold over a 50 nm titanium

adhesion layer, a separate shield is employed to further reduce both scattered light and

electrostatic backgrounds. The shield (Figure 8.1c) is also nanofabricated in silicon, to

obtain an L-shaped cross-section in the x − z plane. The horizontal plane of this device

is 350 µm × 1000 µm × µm in the x, y, z directions, and the vertical wall nearest

to the trap is 22 µm tall (z) and ∼2 µm thick (x). The shield, also sputter-coated with

150 nm gold over 50 nm titanium, is maintained stationary during a measurement, while the

attractor system scans along the y direction with reciprocating motion. This arrangement

is designed to reduce the background from electric field gradients, originating from both a

contact potential and patch potentials of the surface of the attractor system [27, 78], as

it scans in front of the microsphere. Additionally, the shield reduces backgrounds due to
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Figure 8.2: Composite image of two nanofabricated devices in the vicinity of the trap,
together with a trapped microsphere, captured by the side-view microscope. Device 1 is
the attractor system, mounted on the main nanopositioning stage, and Device 2 is the
electrostatic shield, mounted on the auxiliary nanopositioning stage. The L-shaped cross-
section of the shield, which usually houses the attractor system, is not visible here. In this
image, the attractor system is translated vertically from its nominal position and is out
of focus, the latter reducing the apparent vertical extent. The main frame of the image
shows the scattering of the trapping laser by the microsphere (A), which leads to saturation
of several pixels of the camera. The inset is taken with a notch filter that has an optical
depth of 6 for 1064 nm light (Thorlabs NF1064-44), in order to demonstrate the shadow of
the microsphere (B) blocking the 870 nm illumination of the shield. The bright and blurry
region (C) behind the device is caused by a reflection of the illumination from the handle of
the attractor system.

modulations of the halo of the trapping beam or other stray light, which mimic minute shifts

in the centroid of light on the QPD. An example image from the auxiliary side microscope

showing all devices in close proximity to a trapped microsphere is shown in Figure 8.2.2

2This side microscope, detailed in Reference [37], is significantly more sophisticated than that described
in Chapter 2, and has been designed for this newer iteration of the apparatus specifically to perform quan-
titatively accurate alignment of all devices in close proximity to a trapped microsphere.
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With all devices in position as in Figures 8.1 and the apparatus calibrated as described,

the attractor system undergoes harmonic reciprocating motion with a frequency of 3 Hz and

a peak-to-peak amplitude of 202 µm along the y direction, corresponding to ∼4 full periods of

the density modulation. During a 10-s-long measurement, the motion of the microsphere, the

position of the attractor system in three dimensions, as well as various power-monitoring

photodiodes, and feedback monitors, are synchronously digitized at 5 kHz and stored in

a single binary file with timestamps. Environmental variables such as temperature and

atmospheric pressure are sampled at a lower rate stored separately. A total integration of

105 s is obtained by repeating such 10 s measurements 104 times.

8.2 Analysis

8.2.1 The Data Sample

For the 7.56 µm silica microspheres used here, a force sensitivity of ≤1×10−16 N/
√
Hz in the

1 Hz to ∼50 Hz frequency range is achieved [37]. For neutral microspheres, this performance

is also observed when both attractor system and shield are in close proximity, as shown by

a typical force amplitude spectral density (attractor systemD) displayed in Figure 8.3, with

the closest shield surface at 11 µm from the center of the microsphere. The observed baseline

noise is of a statistical nature, and can be integrated for multiple days without encountering

an irreducible floor. The 105 s data set used here was collected with one microsphere. The

distance between the center of the microsphere and the front surface of the attractor system

in the x direction is 13.9 µm, and the offset between the center of the microsphere and the

center of the attractor system is 4.9 (−15.7) µm in the y (z) direction. The uncertainties and

drifts of these parameters over the entire run are about ±1 µm or less and are specifically

shown in Table 8.1. Although the expected sensitivity for this exposure at the noise limit

corresponds to α ≈ 1× 107 for λ = 10 µm, the actual sensitivity is limited by backgrounds,

which manifest when the attractor system scans. This is illustrated by Figure 8.3, as there

are specific frequencies at which a response well above the noise results from the scanning

of the attractor system.
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Figure 8.3: Amplitude spectral density (attractor systemD) of the z component of the
force on a 7.56 µm diameter microsphere. The black (red) curve shows actual data with the
attractor system stationary (scanning along y at 3 Hz with 202 µm peak-to-peak amplitude).
The blue bars show a comparison to an expected microsphere response produced by the
potential described by Equation 8.1 with with α = 1010 and λ = 10 µm. The data displayed
here is the average of 100 distinct 10-s integrations.

8.2.2 Backgrounds

Backgrounds can originate from several sources. Interactions between electric field gradients

induced by the attractor system and the electric dipole moment of the microsphere, esti-

mated to be 102 − 103 e·µm [25, 28, 38] with e the fundamental charge, are expected in all

directions, with different levels of attenuation from the shield. In the xy-plane, backgrounds

may also arise from small variations in the halo or stray light, driven by the scanning motion

of the attractor system. In the z direction, this background is expected to be substantially

smaller as the shield blocks the attractor system in the image plane of the retroreflected

photodiode, although couplings between z and x-y at the 20% level exist. The x-y compo-

nents of the background observed at individual frequencies are as large as 1.5 × 10−15 N,

which is equivalent to α ≳ 1011 for λ = 10 µm.
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While the three dimensions can eventually be used to provide a more sensitive mea-

surement, the asymmetry in the current background levels makes the measurement along z

substantially superior for the present analysis. By modeling the system with a finite element

method, it was found that a contact potential difference of ∼50 mV between the attractor

system and the shield can account for backgrounds in z at the observed order of magnitude.

Backgrounds from patch potentials on the attractor system are found to be subdominant

because of strong attenuation from the shield.

8.2.3 Signal Model

In order to conduct a search for non-Newtonian forces that couple to mass, a signal model

is built from mesh calculations of the force between the attractor system and microsphere

as a function of their relative displacement, for various length scales λ. This is done by

first computing the analytical expression for Yukawa-modified gravitational force between

a perfect homogeneous sphere and a point mass. The attractor system is then discretized

and treated as a regular grid of point masses, with the total force between the microsphere

and attractor system being the sum of the constituent analytical results. An example result

of this calculation for the d = 7.5 µm microspheres is shown in Figure 8.4, at four differ-

ent attractor-face to microsphere-center separations, and for λ = 10 µm and α = 1. The

expected force along all three axes is shown, including the “DC” component from the inter-

action between the bulk of the attractor system and the microsphere, as well as the expected

modulation. The signal scales proportionally to α, which is the parameter of interest in the

statistical inference procedure.

This model is subsequently sampled by the measured position of the attractor system

during each 10 s run to generate the expected force on the microsphere as a function of

time. The microsphere response is expected to have different amplitudes at several inte-

ger multiples of the fundamental frequency f0 of the attractor system motion, as shown

Figure 8.3.

As some background sources, such as vibration, are expected to affect mainly the funda-

mental frequency, we exclude 3 Hz and use only harmonics which contain an expected signal

stronger than that of 3 Hz. Also excluded are the 6 Hz, 2nd harmonic, because of a poten-

tial background arising from non-linearities in the system, and the 30 Hz, 10th harmonic,

because of an unidentified large spectral feature at 29.7 Hz (also present with the attractor

system stationary). Therefore, the search is performed using the harmonics at 12, 18, 21,
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Figure 8.4: An example result of the mesh calculation for the Yukawa-modified gravitational
force with α = 1 and λ = 10 µm, in all three orthogonal axes, on a d = 7.5 µm and sourced
from the attractor system described. The expected force is shown for a few distinct hori-
zontal separations, and a single fixed vertical separation, included to demonstrate exciting
a response in the axial direction.

33, 36, and 39 Hz. In addition to the amplitude information, the phase of the expected

signal relative to the attractor system motion is incorporated for all those harmonics.



188 CHAPTER 8. SEARCH FOR NON-NEWTONIAN INTERACTIONS

Figure 8.5: The single harmonic maximum likelihood estimator (MLE) α̂i for λ = 10 µm as
a function of time for the six harmonics used in the analysis. Each harmonic fi is evaluated
separately taking into account its own phase response and noise level. Here, each estimation
of α̂i comes from 5000 seconds of data. The error bars represent 95% confidence intervals
about the MLEs. The panel to the right shows the MLE for each harmonic, integrating over
the entire data set (note the expanded vertical scale).

8.2.4 Statistical Procedure

For each harmonic fi, we define the following likelihood function,

Li(α, λ) =∏
j

(
1√
2πσij

)2

exp

{
−[Re(Fij − τi(α, λ,

#–x j))]
2

2σ2ij
− [Im(Fij − τi(α, λ,

#–x j))]
2

2σ2ij

}
,

(8.2)

where Fij is the value of the single-sided Fourier transform of the z-force (normalized to

units of N/
√
Hz) in the frequency bin corresponding to fi, τi(α, λ, #–x j) is the value of the

Fourier transform of the expected signal force in the same frequency bin for a given α and λ

and attractor system displacement #–x j , σij is the standard deviation of the Gaussian white

noise in the frequency bin for fi, estimated from 10 neighboring sidebands, j indexes the
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104, 10-second-long, data-files, and Re() and Im() are the real and imaginary components

of the complex-valued Fourier transforms, respectively.

Specifically, σij is calculated as follows for a single harmonic, fi, and continuous integra-

tion, j, from the observed variance of neighboring sidebands fk:

σ2ij =
1

2Nsb

Nsb∑
k=1

[
Re(Fkj)

2 + Im(Fkj)
2
]
, (8.3)

where Nsb = 10 is the number of sidebands, Fkj is the value of the Fourier transform of the

z-force in the frequency bin corresponding to the sideband fk, and the factor of (1/2) yields

the expected uncertainty for either the real or imaginary component independently.

Each Li(α, λ) can be used individually to provide the maximum likelihood estimator,

α̂i, for each harmonic, as shown in Figure 8.5. It is confirmed that the measured signals

are background-like and not due to a novel interaction by observing that the amplitudes

extracted for each selected harmonic do not exhibit the expected ratio from the signal as

shown in Figure 8.3. In addition, the expected time-invariant behavior is not found in the

data.

Due to the different levels of background in different harmonics, each is treated inde-

pendently in the statistical procedure and combined in an approach following [221]. This

utilizes the fact that a gravity-like force should be present in all harmonics, increasing the

sensitivity when backgrounds are correlated differently than the expected signal.

Since the described experiment is sensitive to the direction of the force, upper limits can

be set separately on positive and negative values for α. Harmonics with α̂i > 0 are used to

constrain an upper limit on α > 0, while those with α̂i < 0 constrain α < 0, following the

procedure in [221]. A test statistic for harmonics fi with α̂i > 0 is defined as

qα,i =

−2 log
(

Li(α,λ)
Li(α̂i,λ)

)
α ≥ α̂i

0 α < α̂i

, (8.4)

where a nearly identical function is defined for harmonics with α̂i < 0, but with the condi-

tions flipped appropriately for the change in sign. The final test statistic used to establish

upper limits on alpha is simply the sum over all harmonics, qα =
∑

i qα,i, and is profiled

independently for α > 0 and α < 0. For this work, the entire procedure was completed
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with three completely independent analysis frameworks, in order to provide a level of cross-

validation.

The method introduced above was thoroughly investigated by injecting artificial software

signals on top of actual experimental noise. Data sets with a total length of 104 seconds

were used, in which the relative positions of microsphere and attractor system are nearly

the same as in the primary measurement, but with no scanning motion and hence with no

signal or background. This was done repeatedly for a range of both parameters, and an

upper limit was estimated for each unique data set. This process validates the analysis,

quantifying the deviation from Wilks’ theorem [221] (and the expected χ2 distribution), and

finding the critical values corresponding to the 95% CL upper limit. In a separate process,

constant and time-varying backgrounds were added together with a simulated signal, testing

various scenarios and demonstrating that the procedure is robust against under-coverage.

8.3 Results

For values ranging from λ = 1 µm to λ = 100 µm the results are shown in Figure 8.6.

The proximity of the upper limit on |α| for both directions implies that the background is

of the same order of magnitude in the most sensitive harmonics. This provides a degree of

robustness against possible cancellations with backgrounds and signal in opposite directions,

as the expected signals (in terms of α̂) should be consistent between harmonics. The limit

is constant for λ ≳ 10 µm, and degrades exponentially as the length scale becomes shorter

than the separation between the attractor system and the microsphere.

The main systematic uncertainties are summarized in Table 8.1. The dominant effect

is the uncertainty in the distance between the attractor system and the microsphere in

the x direction. Further significant contributions come from uncertainties in the phase

response of the microsphere as measured in the calibration procedure, uncertainty about

the attractor system thickness, as well as drift of the amplitude response. microsphere

properties, distances in x and y, and alignment stability and accuracy of the attractor

system movement have been found negligible.

The main limitation of the investigation presented here is the existence of backgrounds

originating from electrostatic interactions, stray light modulated by the attractor system

motion, and vibrations of components inside the vacuum chamber. As mentioned above,

the interaction between the microsphere and an electric field gradient arising from a contact
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Figure 8.6: Limit curve in the α− λ parameter space. The region above and to the right of
the red and blue lines indicates the parameter space excluded by this experiment for positive
and negative α, respectively, with a 95% confidence level. The gray region shows the pa-
rameter space covered by previous searches [194–196, 198]. The background-free sensitivity
for this run, using the current attractor system-microsphere separation, noise conditions,
and integration time is shown by dash-dotted orange line. In addition, the projected sen-
sitivity for the next run, given the improvements outlined in the text, is shown by the
dash-double-dotted purple line. This assumes a noise floor of 1 × 10−18 N/

√
Hz, attractor

system-microsphere separation of 7.5 (-5) µm in the x (z) direction, and an integration time
of 30 days. The reach could be extended further by using larger microspheres [34] or smaller
separations [37].

potential can be calculated to provide an adequate model for the electrostatic backgrounds.

This model can be constrained and validated by a three-dimensional scan in which the

attractor system is placed in different regions around the microsphere, as in Reference [27].

The interaction will then be minimized by applying a bias between shield and attractor
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system to null the contact potential. The stray light background is being investigated

with a combination of measurements and ray tracing analysis, to inform the design of light

baffles, in parallel with the development of a new multi-pixel sensor to replace the QPD,

that will provide discrimination between actual shifts of the microsphere and changes in the

halo. Finally, critical optical components inside the vacuum chamber are being stiffened

to minimize vibrations. Those efforts, along with the multi-harmonic analysis technique

presented above, are expected to push the experiment into the noise dominated regime for

the next run. The improvement in sensitivity from those changes, without altering other

parameters, can be seen in Figure 8.6.

Beyond background suppression, an improvement in sensitivity in terms of noise reduc-

tion is targeted with the next iteration of the experiment. It is important to emphasize that

the force sensitivity of the system is limited by pointing fluctuation of the trap beam [37]

and not by shot noise or residual gas damping as already demonstrated in References [34,

60]. Therefore, an enclosure of the input external to the vacuum chamber, possibly replac-

ing air with helium to lower the refractive index and hence the effects from its fluctuation,

along with the stiffening of mechanical components, are expected to lead to substantial re-

duction of the noise floor, down to ∼1 × 10−18 N/
√
Hz as demonstrated in Reference [34].

In addition, a significant gain in sensitivity will be achieved by changing the position and

proximity of the attractor system, which, in the current run was limited by misalignment

of the attractor system and the electrostatic shield. The projected sensitivity assuming the

lower noise floor, 7.5 (-5) µm separation in the x (z) direction, and an integration time of

30 days is shown in Figure 8.6.

Table 8.1: List of systematic uncertainties.

Effect: ϵ ∆ϵ ∆α/α

Drift of amplitude response 10% 10%

Attractor thickness 1 µm 11%

Phase response ∼0.1 rad 12%

Distances in Y <0.2 µm < 3%

Distances in Z <0.9 µm < 6%

Distances in X 1.5µm 30%

microsphere weight 15 pg 3.5%
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8.4 Conclusion

We have described the results of the first experiment searching for non-Newtonian forces

which couple to mass using optically levitated test masses. The effects observed in the data

are not consistent with a new interaction, and the result is interpreted in terms of upper limits

on the Yukawa parameter α. These are α > 9× 107 and α < −8× 107 with 95% confidence

level at λ = 10 µm. The length scales involved in the experiment, in terms of dimensions of

the test masses and feature size of the source of the interaction, and the separation between

the two, are, for the first time, all similar to the characteristic length scale being probed.

Therefore, this method provides a more robust test that applies also for interactions that

cannot be parameterized with a Yukawa potential. Substantial improvements in sensitivity

are expected for the next round of measurements.
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Conclusions

Optical levitation and trapping is a technique that leverages the interaction between a

focused laser beam and a dielectric particle. By virtue of both the reflection and deflection

of incident photons, particles with an index of refraction larger than that of the surrounding

medium are attracted to the focal point of the laser. The radial confinement is easily

understood in the paraxial limit, where motion of the trapped particle away from the beam

center induces deflections of the trapping beam, which necessarily generate optical restoring

forces on the trapped particle due to momentum conservation. Axial confinement can then

be achieved with the gradient forces associated to a highly focused laser beam (numerical

aperture NA ≳ 0.5), or by balancing the axial radiation pressure force against another

force such as gravity, either of which results in fully three-dimensional trapping about some

equilibrium position.

As was alluded, displacement of an optically trapped particle about its equilibrium po-

sition scatters the trapping beam. The scattering is necessarily associated to an optical

restoring force, equal in magnitude and opposite in direction to whatever force initially in-

duced the displacement. This leads naturally into force-sensing applications, where measure-

ments of the scattered light can be used to infer any forces applied to the trapped particle.

The length scales associated to typical optical traps, order of magnitude ∼0.1 µm to 10 µm,

present certain advantages for studies of new physics.

In particular, we consider tests of the universal law of gravitation and searches for fifth

forces. This is motivated by our limited understanding of gravity at submillimeter length

scales, as well as some outstanding problems in cosmology whose answers may be found at

these distance scales. Assuming General Relativity is an accurate description of the dynamics

of gravity, and we also trust our observations of the cosmic microwave background and

baryon acoustic oscillations, then there is significant implied energy content in the universe

that has yet to be understood or observed experimentally. This has come to be called this

195
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dark energy. It is possible to derive a length-scale associated to this missing energy density,

which is approximately 100µm. At distances below this length scale, new interactions

mediated by new particles and fields or modifications to the dynamics of gravitation itself

can be expected, suggesting that precise characterizations of gravity in this regime have

intrinsic value.

In this thesis work, I have presented the development and use of a vertically-oriented

optical tweezer to trap silica microspheres, stabilized axially by gravity and operated in

vacuum. The trap was generated by a fiber-optic laser source with wavelength 1064 nm,

focused to a ∼3 µm spot with a numerical aperture of NA = 0.12. All of the measurements

and techniques described made use of one of two types of silica microspheres, sourced from

two different manufacturers and with radii of 2.35 µm or 3.76 µm. The focal point of the laser,

the nominal position of the optical trap, was enclosed by six identical shielding electrodes in

order to mitigate the influence of stray electric fields. The electrodes could be individually

biased in order to generate known forces and torques on a trapped microsphere, which was

particularly useful for calibrating the system.

Calibration of a microsphere’s translational response to external forces was accomplished

by applying a known oscillating force to a charged microsphere, while simultaneously measur-

ing the amplitude of the response. The charge state of the microsphere was then modulated

with flashes of UV photons, which ejected individual electrons photoelectrically, changing the

amplitude of the microsphere response in unit steps with size proportional to the elementary

charge. This provided an empirical calibration of the system based only on measured quan-

tities and a single fundamental constant, avoiding unnecessary assumptions and maintaining

a degree of robustness.

Once calibrated, a optically trapped microsphere was used for force sensing, simply by

observing the translational motion in response to a chosen excitation. The capability of this

force sensing was demonstrated with the development of a technique referred to as force-field

microscopy. A nanofabricated mechanical device of microscopic dimensions was introduced

in proximity to a charged microsphere. The device was positioned over a three-dimensional

array of points in the vicinity of the trap, and was biased with a voltage and used as an

excitation electrode. At each position within a 10×10×10 grid of relative positions between

the electrode and microsphere, the electrode was biased with an AC voltage and measured

the response of the microsphere along three orthogonal degrees of freedom. The result is

a force-field: i.e. a three-dimensional array of points, with a three-dimensional measured
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force response at each point within the array. The measurement was compared to a finite

element analysis of the expected force around the biased electrode, yielding good agreement

between observation and expectation.

Force-field microscopy was then applied to characterize a possible source of electromag-

netic background forces in precision short-distance force sensing. Optically trapped micro-

spheres have been found to have permanent electric dipole moments, which couple to electric

fields and electric field gradients. In the searches for new physics, gravity-like interactions

were sourced by a mechanical device in close proximity to a trapped microsphere. Metalli-

cally coated silicon and gold devices were used as sources, whose sputtered titanium/gold

surfaces are known to have patch potentials, or microscopic domains within the coating that

have measurably different contact voltages. The random nature of these patch potentials

induce large and randomly distributed electric fields and gradients near to surfaces on which

they lie. Using force-field microscopy, the response of a charged microsphere to the patch

potentials on the end of an aforementioned source mass device were characterized. The

scaling of the root-mean-square force was found to be consistent with a simple toy model of

patch potentials, and the product of the characteristic patch size and expected variance of

the patch potentials was computed.

When testing forces that couple to mass, it is clear that accurate and precise knowledge of

the test and source masses is critical to making quantitative measurements and inferences.

As such, a technique to measure the mass of optically trapped microspheres in situ was

developed, and together with radius characterization of individual spheres using electron

microscopy, the density of the levitated microspheres was inferred. The mass was first

measured by applying an axial electrostatic force to a charged microsphere whilst actively

modulating the optical power of the trapping beam to maintain a constant suspension force

balancing Earth’s gravity acting on the microsphere. By extrapolating the measured relation

between applied electric strength and measured optical power to the point of zero optical

power, the algebraic relation qE = mg was used to infer the mass m, given that q was known

by virtue of the single-electron-precision control of the microsphere charge state, E was the

extrapolated value of the electric field strength whose scale is known by construction, and g

was known. Mass measurements were performed on several microspheres in multiple vacuum

pressure regimes and with both signs of charge states, all yielding consistent results. The

technique was demonstrated for ∼80 pg and ∼420 pg silica microspheres.

A select few microspheres whose masses were measured were then individually collected
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from the optical trap with a nanofabricated silicon device. These microspheres were trans-

ferred to a scanning electron microscope where their apparent sizes were compared to cal-

ibrated diffraction gratings in order to provide an accurate measurement of their radius.

With the mass and radius characterizations of specific and individual microspheres, their

densities were calculated directly, assuming homogeneity. It was found that for certain types

of silica microspheres, distinguished by their manufacturer source, their measured density

(1.55 g/cm3) was significantly less than that of both fused silica and the value provided by

the manufacturer itself (∼1.8 g/cm3). The density of a second type of microsphere, also

with a larger radius, was found to be consistent within measurement uncertainty with the

value provided by the manufacturer (1.86 g/cm3). These results and inherent discrepan-

cies suggested that precise characterization, beyond assuming datasheets are correct, of the

levitated test mass properties is absolutely critical to any application dependent on those

properties.

While the permanent electric dipole moment of these silica microspheres is a possible

source of background forces, it also provides a handle by which to control the rotational

degrees of freedom of a trapped microsphere, given that a dipole moment tends to align

with the direction of an externally applied electric field. By driving four of the six shielding

electrodes, a coplanar set, with four properly phased sinusoidal voltages, an electric field

with a constant magnitude and a rotating orientation was applied to trapped microspheres.

The resulting torque induced a trapped microsphere to rotate in the plane of the driving

electrodes. This rotation was measured using the residual birefringence of the microspheres:

as they rotate, they couple some of the linearly polarized trapping beam light into the

orthogonal polarization, at a rate of twice their rotation frequency. The cross-polarized

light was separated downstream of the optical trap and collected on a photodiode to recover

a measurement of the microsphere’s angular position. Various dynamics of the rotational

motion were then exhibited.

A rapidly rotating microsphere was released from the electric field and allowed to de-

celerate in the presence of drag torque from residual gas at high vacuum, and the resulting

exponential decay of angular velocity was observed. With the electric field left continuously

driving, moderate pressures of nitrogen gas were introduced to the experimental chamber

such that the equilibrium orientation of the microsphere’s dipole moment lagged behind

the orientation of the electric field due a drag torque comparable in strength to the driving

electrical torque. Again with a continuously driving electric field, phase modulations of the
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cross-polarized rotational signal were observed and further identified as librational motion.

In the frame co-rotating with the applied electric field, the orientation of the electric dipole

moment of a trapped microsphere oscillated harmonically about the direction of the electric

field, yielding phase modulations of the rotation signal. The scaling of the fundamental

libration frequency as a function of electric field strength was then characterized to infer

the magnitude of the electric dipole moment of a spinning microsphere. Finally, gyroscopic

precession was induced by rapidly changing the orientation of the electric field by 90°.

The spindown of a rotating microsphere in the absence of electric field and the phase lag

induced by surrounding gas were applied to operate the apparatus as spinning-rotor vacuum

gauge. The kinetic theory of gases implies a direct proportionality between the torsional

drag coefficient and the residual gas pressure, so that measurements of the torsional drag are

pressure measurements. At the system’s base pressure, limited by residual water content,

spindowns from a 100 kHz angular velocity were found to have exponential decay times of

∼2000 s, implying pressures of a few 106 mbar. The accuracy of the gauge was cross-checked

against a capacitance manometer by inducing equilibrium drag with non-negligible pressures

of six different gas species. Geometric coefficients related to the surface properties of the

microspheres were found to be consistent with theoretical expectations, and across multiple

microspheres from the same lot. Given that the torsional drag depends specifically on the

gas species, this type of spinning-rotor gauge could be employed for species identification

if used in tandem with a species-independent gauge like a capacitance manometer, with

applications such as process gas control for nanofabrication.

With the myriad of metrological tools discussed, the apparatus was applied to investigate

fundamental physics, specifically searching for new interactions that may manifest at short-

distance. An intriguing example of possible new physics are screened interactions, where

the strength of the underlying quantum field, and thus the mass and effective range of any

force-mediating particle excitation of this field, depends on the nearby matter content. Non-

negligible matter content, such as is found nearly everywhere on Earth, tends to suppress

the field strength and significantly limit the range and strength of the interaction. Out in

space, the field is no longer screened and can mediate long-range interactions that may help

explain dark energy, the universe’s apparent missing energy content.

A particular screened interaction called the chameleon field was investigated by using a

trapped microsphere as a test mass, where the evacuated region in the vicinity of the opti-

cal trap allows for a non-negligible chameleon field strength. It turns out that test masses
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are actually sensitive the gradient of the chameleon field. These were induced with a high

aspect ratio mechanical device, akin to a silicon cantilever, in vacuum, so that there was a

large gradient near the matter-vacuum interface, given that the mechanical device signifi-

cantly screens the chameleon field and the vacuum environment does not. Furthermore, the

gradient was modulated by driving the mechanical device toward and away from a trapped

microsphere, allowing for a precise characterization of any anomalous forces at the chosen

driving frequency. A maximum likelihood parameter inference found our data to be consis-

tent with no new interactions, and instead, dominated by an electrostatic background due

a contact potential on the mechanical device interacting with the electric dipole moment

within a trapped microsphere.

While probing specific theories and models clearly has value to the physics commu-

nity, more general characterizations of gravity-like forces that manifest at short-distance

are applicable to broad classes of theories. Under this paradigm and assuming tabletop

experiments operate in the classical (non-relativistic) regime, it is customary to write down

a modified Newtonian gravitational potential of the form V (r) = (Gm1m2/r)(1 + αe−r/λ),

which includes the usual (1/r) term, plus a Yukawa-type modification with a strength α

relative to gravity and effective range λ. Proposed extensions to our current understand-

ing of physics, such as supersymmetry, string theory, modified General Relativity, massive

gravitons, and more, each imply possible values of α and λ that one could measure with an

appropriate apparatus. This α − λ parameter space has been probed over a huge range of

scales, making use of observations of the orbits of planets within our solar system, as well

as microscopic resonators and torsion pendulums. It should be noted that this is only a

particular parameterization, and other functional forms have been proposed.

Optically levitated microspheres were applied to this investigation as part of the conclu-

sion of this thesis work. With a now well-characterized microsphere acting as a force sensing

test mass, gravitational interactions including possible Yukawa modifications were probed.

The interactions were sourced with a custom nanofabricated device consisting of alternating

regions of gold and silicon with a sputtered gold coating to ensure an isopotential surface

and to minimize possible electrostatic backgrounds. The source mass was made to oscillate

laterally in front of the test mass at a fixed separation such that the microsphere was exposed

to multiple regions of the alternating mass density. This induces an oscillating gravitational

response of the test mass at integer multiples of the fundamental driving frequency. To fur-

ther suppress electrostatic backgrounds, a custom nanofabricated shield device, consisting
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entirely of silicon with sputtered gold coating, was held stationary between the test and

source masses for the duration of the measurement.

This search for new interactions with optically levitated microspheres was ultimately

background limited, due to both contributions from anomalous scattered light contaminating

the measurement, as well as real background forces from contact potentials interacting with

the trapped microsphere’s electric dipole moment. A simultaneously cautious and robust

statistical inference procedure was proposed and implemented, making use of the test mass’s

independent response at different frequencies and the highly-correlated harmonic structure

of the expected signal. This procedure set upper limits of the order α ≲ 108 for λ ∼ 10 µm.

Notably, this result represents the first use of optically levitated microspheres

in a search for new interactions that couple to mass at submillimeter range,

where searches in this range are highly motivated by the dark energy length scale of 100 µm.

This technique is entirely complementary to existing methodologies, and is subject to an

entirely different set of systematic effects, so that in the wake of potential discoveries, reliable

cross-checks are available and attuned.
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Summary for Non-Scientists

The “Why”

From a physicist’s perspective, everything that happens in the universe is governed by

some physical law, either one we intimately understand, or one we are working toward

understanding. This is true for the largest and the smallest scales, ranging from galaxies to

microscopic system. Some physical laws have observable consequences at all of these scales,

most notably the universal law of gravitation. Gravity, however, presents and interesting

an unique problem: the fundamental equations that tell you how gravity should behave,

i.e. Einstein’s General Relativity, are vastly different than any of our other equations that

describe such things as how atoms are held together, or how photons propagate in space.

Our understanding of gravity can be tested with astronomy and cosmology, by looking

out into space and seeing what all the stars and galaxies are doing. When we do this,

we observe motion and distributions of matter that can be explained reasonably well by

General Relativity, with the caveat that the reigning description includes two mysterious

contributions to the mass and energy density of the universe: dark matter and dark energy.

There is no current consensus on exactly what dark matter and dark energy are, although

we can infer their presence based on these cosmological observations. Yet, their nature has

significant consequences for our understanding of the origin and the ultimate fate of the

universe.

New theories or modifications to General Relativity that attempt to explain these mys-

terious contributions often have specific observable consequences, for example an increase in

the expected strength of gravity when two objects are close together, or far away from one

another. However, there is a complication that gravity is generally very weak compared to

other fundamental forces like electromagnetism, such that precise investigations of gravity

have historically required large masses like planets and stars, since the expected strength is

203
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proportional to the masses of the interacting objects. Gravity is not well understood when

the separations are small, of microscopic proportions less than about 1 millimeter. In this

short-distance regime, there are number of testable theories explaining dark matter or dark

energy that would result in anomalously large or anomalously small gravitational forces.

If forces at this scale can be measured, it is possible to learn something about the nature

of gravity and General Relativity. The work described in this thesis seeks to explore this

regime of gravity.

The “How”

The interaction of light and matter is critical to a variety of different physics experiments

and techniques. Particularly useful is laser light, which can be focused down to extremely

small and bright spots, much like sunlight can be focused with a magnifying glass. Small

particles that bend light, such as water droplets or microscopic glass spheres, can then be

confined within the focused spot of a laser beam. This is the basis of optical tweezers, the

technique around which this thesis work has been built, wherein a microscopic glass sphere is

held to a specific location in three-dimensional space, and suspended against Earth’s gravity

with the radiation pressure applied by the laser beam.

Once confined to an optical tweezer, subsequent motion of a trapped sphere scatters

the laser light used to form the tweezer. For example, if the sphere moves slightly to one

side of the center of the tweezer, it bends the focused laser beam in the direction in the

direction of motion. If the scattered laser beam is monitored with light-sensitive detectors

(similar in principle to digital cameras), then the motion of the sphere is also monitored.

This leads us naturally into applications of force-sensing, in which external forces pushing on

an optically trapped sphere cause it to move, which in turn deflects the laser beam and can

thus be measured. It possible to derive a direct relation between the applied force and an

observed deflection, both with computer-driven simulations as well as empirical calibrations.

In this fashion, an optically trapped sphere can be used as a force sensor, specifically useful

for short-distance force sensing given the microscopic size of the glass spheres that can be

trapped with laser light. This framework is detailed schematically in the figure below.
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A sphere is shown confined by a optical tweezer. An applied force pushes the sphere to
one side, resulting in a deflection of the laser beam used to from the optical tweezer. The
deflection can then be used to monitor the motion of the sphere, and eventually measure
the applied force.

- Force-field Microscopy

A number of applied physics techniques were developed in this thesis work making use of

an optically trapped sphere acting as a force sensor. The first of these we call force-field

microscopy. Consider for a moment the concept of a van de Graff generator, the classic

physics demonstration wherein static electricity is generated on a large metallic sphere. If

you get close to the van de Graff generator, especially if you touch it, the electrical forces

produced cause your hair to stand up. Clearly, if you stand far away, your hair doesn’t stand

up because the electrical force is smaller the farther away you are. This same principle holds

for a variety of different forces: the strength (and direction) of a force depends on your

position relative to the source of that force. If you can measure this position-dependence, it

is possible to better understand the origin and fundamental nature of the force being sensed.

This is the basic principle of force-field microscopy. We demonstrate this technique by

placing a source of electrical forces in proximity to an optically trapped sphere. The electrical

forces push and pull on the sphere depending on the position of the source relative to the

sphere, e.g. the force is smaller for greater separations between the two. By measuring the

deflections of the laser beam that result from these pushing and pulling forces, it is possible
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to reconstruct the strength and direction associated to the force. Piecing together results

from the many different positions tested, we measure the electric field around the source of

electrical forces. It is also possible to simulate the expected electric field, and our measured

data very closely matches the simulation result. An example of this measurement can be

seen in Chapter 3, specifically Figure 3.5.

- Mass and Radius Measurements

Generally speaking, proper inference of any forces sensed by a trapped sphere requires

detailed knowledge of the properties of the sphere, in particular its mass and radius. For

example, the more massive the sphere is, the stronger a gravitational force would be. As such,

we have developed a technique for the precision mass and radius measurement of individual

optically trapped spheres. This is accomplished with an electrical balance of sorts, wherein

the inherent optical suspension provided by the optical tweezer itself is supplemented with

an electrical suspension. By simultaneously varying the strength of the (known) electrical

and (unknown) optical suspension forces, whilst measuring the strength of the electrical

suspension, it is possible to infer the mass of the sphere by equating these suspension forces to

the gravitational force pulling down on the trapped microsphere. We found that the typical

sphere used in our trap weighs approximately 100 picograms, or about one ten-billionth of

the mass of a dollar bill. The measurement scheme and two example measurements are

shown in Figures 4.1 and 4.2, respectively.

Following a measurement of their mass, a few specific spheres were mechanically ex-

tracted from within the optical trap, and transferred to an electron microscope, which is a

common characterization tool used for microscopic objects. The electron microscope used

allows for exceptionally precise imaging, much like a camera, which we apply to determine

the size of the spheres that were collected. Typical spheres measure about 5 microns in

diameter, about size of a human red blood cell. Importantly, with both mass and radius

measurements of individual spheres, we can make robust calculations particle density, which

have implications for the internal structure and physical properties of the spheres. Various

images captured with the electron microscope are shown in Figure 4.4.

- Spinning Spheres

In addition to their overall side-to-side and up-and-down motion, trapped spheres can also

rotate in any direction within the optical trap. We have developed a method to control
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this rotation by using electrical torques. Essentially, a strong electric field is applied to a

trapped sphere, where the electric field points in a specific direction, and by virtue of the

physical properties of the spheres used, they tend to orient themselves with the direction of

the electric field, much like a loaded die always has the same number facing up when thrown.

If the direction of the field is then changed, the orientation of the sphere follows. In this

way, the sphere can be made to rotate by applying a rotating electric field, similar to how a

basketball can be spun on the end of a fingertip. We have demonstrated electrically driven

rotation up to speeds of approximately 100000 rotations/second. Minuscule wobbling of the

sphere as it rotates is actually related to the physical properties of the sphere, and is used

to extract information about how electric charge is distributed within the sphere.

The rotational motion of a trapped sphere has an immediate technical application as a

vacuum gauge in order to measure gas pressures. If the sphere is spun-up to a fast rotation

velocity and then released from the electric field, gas in the immediate vicinity of the sphere

induces a drag force much like air resistance. This drag force causes the sphere’s rotation

to decelerate, where the rate of deceleration can be related directly the gas pressure around

the sphere. An example of this deceleration is shown in Figure 5.4. For force-sensing

applications, air molecules colliding with a trapped sphere cause of lot of random motion of

the sphere, which contaminates any potential measurement. To get around this limitation,

we remove nearly all of the gas from a chamber that houses our optical tweezer, although

there is a small amount of residual gas leftover which sets a limit on how sensitive the

apparatus can be. With a spinning sphere serving as a vacuum gauge, we find that, once

evacuated, our chamber reaches a base pressure of approximately 1 nanobar, about one

billionth of the atmospheric pressure at sea level.

The Results

So far, there has been significant attention to the technical capabilities of the apparatus

described by this thesis work. In addition to developing these methods, we have applied

them to investigations of fundamental physics. In particular, we have performed short-

distance force sensing for gravitational forces, in order to further our knowledge of gravity

and the underlying physics when two objects are very close together. As was hopefully

motivated before, it is precisely this regime where we might find evidence of new physics or

refinements of our current physical laws. Some of these theories are discussed in Chapter 6.
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At their core, these investigations involve a very simple setup. First, a sphere is trapped

and stabilized within the optical tweezer, serving as the “test mass”, i.e. the portion of the

apparatus that responds to applied forces. Once the sphere is in place, a mechanical device

is carefully introduced very near to the sphere. This device is a relatively fancy contraption,

but can be conceptualized quite simply as a stick. The stick has mass and thus interacts

gravitationally with a trapped sphere, serving as the “source mass” and exerting a force that

may be either attractive (like conventional gravity) or even possibly repulsive, depending on

any new physics that might manifest at these short distances. The experiments themselves

then amount to a careful positioning of the source mass relative to the test mass, while

simultaneously measuring the motion of the test mass to look for any response that might

be indicative of new forces.

Two different searches have been performed thus far, with differing emphasis. The first

was as simple as described: a sphere is trapped and a source mass is introduced in prox-

imity. The source mass is made to oscillate toward and away from the trapped sphere, and

the resulting response of the trapped sphere is measured. In a second search, the overall

framework and setup is similar, with the addition of a stationary shielding device between

the test and source masses in order to protect the test mass from possible background forces

that can both limit sensitivity, as well as mimic possible signals. A schematic depiction of

this latter measurement setup is shown in Figure 8.1. After careful analysis of data collected

during both searches, we found no compelling evidence for new physics, although it’s dis-

tinctly possible the effect was smaller than our measurement capability, a constant concern

for physics experiments.

Importantly, and despite the null result, these measurements mark the first pub-

lished instance of tests of gravity with optically levitated test masses. This

statement should not be taken lightly, as nearly all of the other tests of gravity in the

short-distance regime make use of one particular type of apparatus (a torsion pendulum),

and thus they might all be subject to similar uncertainties and errors. Complementary and

competitive techniques are absolutely essential to making robust discoveries in physics, and

this thesis presents just such a complementary method.



Appendix A

The T -Matrix Method

Following the construction of Helmholtz equation (Equation (1.2)), the spectral theorem is

applied again in order to write both incident and scattered optical fields as superpositions

of basis functions that are themselves solutions to the Helmholtz equation [13],

Einc =

∞∑
n

anψ
(inc)
n and Escat =

∞∑
m

pmψ
(scat)
m , (A.1)

where an and pm are coefficients of the basis functions. The summations are not usually

taken to infinity, rather, they are truncated at some value set by the convergence behavior

of the coefficients for a particular scenario. Assuming the dielectric microsphere has a linear

response to the incident optical fields, the scattered field is related to the incident field by

a simple matrix equation,

pm =

∞∑
n

Tmnan. (A.2)

The T -matrix from Equation (A.2) is geometric in nature, depending only on the size and

shape of the dielectric particle (here, assumed to be a microsphere), the index of refraction,

and the wavelength of light. It is usually calculated with the coordinate origin at the center

of the microsphere, so that any translations or rotations of the particle relative to the beam

can be considered by transforming the basis functions themselves, as opposed to the T -

matrix, and thus the expansions of the incident and scattered electric fields. Details of this

calculation will be discussed after a choice of basis functions.
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An excellent set of basis functions known to solve the Helmholtz equation are the vector

spherical harmonics [11, 13]. Following the treatment in Reference [13], choose a coordinate

system centered on the dielectric microsphere, and consider two expansions of the incoming

and outgoing electric fields

#–

E in =
∞∑
n=1

m=n∑
m=−n

anm
# –

M (2)
nm(k #–r ) + bnm

#–

N (2)
nm(k #–r )

#–

Eout =
∞∑
n=1

m=n∑
m=−n

pnm
# –

M (1)
nm(k #–r ) + qnm

#–

N (1)
nm(k #–r ),

(A.3)

where the functions
# –

M and
#–

N are given by,

# –

M (1,2)
nm (k #–r ) = Nnh

(1,2)
n (kr)

#–

Cnm(θ, ϕ)

#–

N (1,2)
nm (k #–r ) =

h
(1,2)
n (kr)

krNn

#–

P nm(θ, ϕ) +Nn

(
h
(1,2)
n−1 (kr)−

nh
(1,2)
n

kr

)
#–

Bnm(θ, ϕ),
(A.4)

where h(1,2)n (kr) are spherical Hankel functions of the first and second kinds, Nn = [n(n +

1)]−1/2 are normalization constants, and the vector spherical harmonics are are given by,

#–

Cnm(θ, ϕ) = ∇× ( #–r Y m
n (θ, ϕ))

#–

P nm(θ, ϕ) = r̂Y m
n (θ, ϕ)

#–

Bnm(θ, ϕ) = #–r ∇Y m
n (θ, ϕ),

(A.5)

where Y m
n (θ, ϕ) are the usual scalar spherical harmonics with complex exponentials and

associated Legendre polynomials [4], θ is the azimuthal angle measured relative to the +z

axis, and ϕ is the polar angle measured in the x−y plane relative to the +x axis. There

is a minor convention subtlety in the construction of Equation (A.3): one can choose to

expand in terms of purely incoming and outgoing fields (as written); or one can specify an

“incident” field with both incoming and outgoing terms, together with a scattered field that

is purely outgoing. The latter approach requires using regularized basis functions, since

those in Equation (A.4) have singularities at the origin, but there are well-defined and easily

calculable transformations between the two solution conventions [14, 15].

To actually calculate the T -matrix itself, a third expansion,
#–

E int, is required to describe

the field internal to the dielectric microsphere [14], an intermediate step of sorts, where
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it is assumed that the microsphere is homogeneous and isotropic given use of these basis

functions. This expansion has the form of Equation (A.3), but uses the regularized basis

functions that are singularity free, with their own set of coefficients,

#         –

RgM (1,2)
nm (k #–r ) =

1

2

[
# –

M (1)
nm(k #–r ) +

# –

M (2)
nm(k #–r )

]
#        –

RgN (1,2)
nm (k #–r ) =

1

2

[
#–

N (1)
nm(k #–r ) +

#–

N (2)
nm(k #–r )

]
.

(A.6)

With these three multipole expansions, a calculation proceeds as follows: first, the matrix

relating the incoming field,
#–

E in, to the internal field,
#–

E int, is determined; then the matrix

relating the internal field to the outgoing field,
#–

Eout, is determined; finally, the product of

the two matrices yields the desired T -matrix. Both of the aforementioned transformation

matrices are calculated by enforcing the following boundary conditions at the surface of the

dielectric microsphere, when r = d/2,

n̂×
(

#–

E inc(r) +
#–

Escat(r)
)
= n̂× #–

E int

n̂×
(

#–

H inc(r) +
#–

Hscat(r)
)
= n̂× #–

H int,
(A.7)

where the magnetizing fields
#–

H =
#–

B/µ, are given by similar expansions:
#–

H inc = (1/kmedium)
#–

E inc,
#–

Hout = (1/kmedium)
#–

Eout, and
#–

H int = (1/kdielectric)
#–

E int, with k = 2πn/λ as before.

Now we can return to the original task of understanding the scattering of a focused laser

beam off of a dielectric microsphere in the vicinity of the beam’s focus. Given the micro-

sphere’s dimensions and material properties (i.e. index), and an input beam wavelength,

the T -matrix is first calculated to some desired precision of multipole expansion,1 as this

is one of the more computationally expensive operations. With the T -matrix in hand, a

numerical solution for the scattered electric field is constructed by first matching
#–

E in from

Equation (A.3) to the known electric field of an input beam, which yields the input expan-

sion coefficients anm and bnm. This can be done in the far-field away from the focus, or

at the focal plane itself, where both methods have certain advantages depending on one’s

application [15].

1Consider a numerical solution that has been truncated at n = Nmax. Given the form of Equation (A.3),
there are a total of 2Nmax(Nmax + 2) coefficients, which determines the size of the T -matrix that must be
calculated.
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Then, the scattered field is given directly by a simple matrix operation,

pi = Tijaj , (A.8)

where i and j run from 1 to 2Nmax(Nmax+2), and {pi} ({aj}) here represents the collection

of both pnm and qnm (anm and bnm) with the solution truncated at n = Nmax.
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Harmonic Oscillators

For small oscillations about the equilibrium position, the center-of-mass motion of an opti-

cally trapped microsphere can be reasonably approximated by that of a harmonic oscillator,

as was shown in Chapter 1. This is also true of the librational degree of freedom of a rotating

microsphere. For the center-of-mass motion, the harmonic approximation forms the basis of

our physical calibration from measured microsphere response to actual applied forces

It goes without saying that physicists at nearly all levels of training are familiar with

the harmonic oscillator, given it’s broad applicability across essentially every subfield. As

such, there are many phenomenal resources for the interested reader, especially introductory

textbooks, and reproducing some of the associated derivations is clearly outside of the scope

of this work. However, presentations vary in their choice of convention, so we include a

sufficient set of equations such that the convention used throughout this work is known.

B.1 The Equation of Motion

The governing equations for harmonic oscillators are derived from Hooke’s law [222], which

relates the displacement/deformation of an elastic body to the force required to generate

that deformation. Consider the classic model of a point mass, m, attached to one end of a

massless spring with spring constant k, and examine a displacement, x, of the mass along a

single axis. Then the displaced mass is subject to a spring force given by,

Fspring,x = −k(x− x0) x̂, (B.1)
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where x0 is the equilibrium position of the mass with the spring unstretched and the minus

sign indicates a restoring force. Given that F = ma = mẍ, Hooke’s law is a second-order

linear differential equation.

A general equation of motion can then be constructed by including external driving

forces, as well as damping forces like drag. Let x0 = 0, and consider ΣF = Fspring+Fdrive+

Fdrag = ma. Skipping a few steps and collecting the final result,

ẍ+ γẋ+ ω2
0x = Re[

F0

m
eiωt], (B.2)

where the dot indicates a time derivative, γ is a damping factor with units of angular

frequency, ω0 =
√
k/m is the natural resonant frequency of the harmonic oscillator, and F0

and ω are the amplitude and frequency of the external driving force.

The steady-state solution to the above EOM can be calculated using the ansatz method,

assuming a solution oscillating at the frequency of the driving force and given by,

x(t) = Re[Aei(ωt+ϕ)]. (B.3)

The amplitude A and phase ϕ (relative to a drive phase of 0) can then be determined

by substituting this ansatz into the differential equation. This yields,

A =
F0

m
[
(ω2

0 − ω2)2 + ω2γ2
]1/2 and ϕ = atan

(
ωγ

ω2 − ω2
0

)
, (B.4)

which are the amplitude and phase of the harmonic oscillator response to a single-frequency

driving force of the form Re[(F0/m)eiωt]. In the case of multiple driving forces, the total

solution is a superposition of these single-frequency solutions.
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Phasors and

Heterodyne Interference

The following calculations have been included in this appendix, as most introductory litera-

ture (and even some peer-reviewed manuscripts) seems to avoid discussing potential pitfalls

when using phasor notation for interference problems. There are even select instances where

the calculations appear to be incorrect, although usually only by a factor of 2.

C.1 A Gaussian Beam

The following analysis will be performed in the paraxial limit, with perfectly aligned TEM00

modes. The electric field of a Gaussian beam at it’s focal plane is given by,

#–

E( #–x , t) = E( #–x ) cos [Φ(t)] = Re
(
E( #–x )eiΦ(t) p̂

)
with E( #–x ) = e

−| #–x |2

w2 and Φ(t) = ωt+ ϕ,

(C.1)

where E( #–x ) is the spatial mode of electric field with peak value E and beam waist w

(the radius at which the intensity has dropped by 1/e2); Φ(t) is the temporal phase, with

ω = 2πc/nλ the optical frequency, c the speed of light, n the index of refraction, λ the

vacuum wavelength, and ϕ an arbitrary constant phase (included for generality); and p̂ is

the polarization of the beam, assumed orthogonal to the direction of propagation.

Given that traditional optical detectors are sensitive to intensity and not the electric

field directly, the square of the electric field | #–

E( #–x , t)|2 is generally considered. Furthermore,
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the intensity will be integrated over an infinite (or half-infinite) plane to compute the optical

power, and subjected to a time average, given that semiconductor-based detectors are not

capable of responding at optical frequencies of ∼PHz,

⟨P⟩ =
〈∫

dA I( #–x )

〉
=

∫
dA

〈
1

η

∣∣∣ #–

E( #–x , t)
∣∣∣2〉 , (C.2)

where η = 1/cϵ is the wave impedance and ϵ is the dielectric constant. Since the integral is

over spatial coordinates, it’s assumed to commute with the time-averaging operator. Con-

sider the total power in a single Gaussian beam. This calculation will be performed both

with the real-valued field and in phasor notation, making use of the expression |A|2 = A∗A

with (∗) the complex conjugate,

⟨P⟩ =
∫
dA

〈
1

η
|E( #–x ) cos [Φ(t)]|2

〉

=

〈
cos [Φ(t)]2

〉
η

∫
dA

(
E2e−2

| #–x |2

w2

)
=

〈
1
2 {1 + cos [2Φ(t)]}

〉
η

(
πw2E2

2

)
=
πw2E2

4η
,

⟨P⟩ =
∫
dA

〈
1

η

∣∣∣E( #–x )eiΦ(t)
∣∣∣2〉

=

〈∣∣eiΦ(t)
∣∣2〉

η

∫
dA

(
E2e−2

| #–x |2

w2

)
=

〈
e−iΦ(t) · eiΦ(t)

〉
η

(
πw2E2

2

)
=
πw2E2

2η
,

(C.3)

where ⟨cos[2Φ(t)]⟩ = 0 trivially since Φ(t) = ωt+ ϕ is linear in t and ω ∼ PHz is well above

the response time of any practical detector; and e−iΦ(t) ·eiΦ(t) = 1 for all t. This result clearly

presents a problem, given that the answers are not the same. The issue arises from assuming

that the real-value operator, Re(...) commutes with the squared norm, |...|2, which was done

implicitly in first line of the right column. This is often the case for interference problems:

people make use of the phasor notation, since complex exponentials are powerful and make

some mathematical operations trivial, and arrive at quantitatively inaccurate solutions.

For single beams, the phasor notation can be used naïvely to compute the power, simply

including an “extra” factor of (1/2) from the time-average of the oscillating terms.1 Then,

we arrive at the correct expression relating the optical power, a directly measurable quantity,

1Although this is by no means rigorous, one can recall Euler’s formula (eiϕ = cosϕ + i sinϕ) and say
that computing the complex-square of an electric field in phasor notation “double counts” the power since
there are two sinusoids (cos and sin) in a single phasor (eiϕ). A simple factor of (1/2) adjusts for the
“double-counting”.
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to the beam waist and electric field of a TEM00 mode beam,

⟨P⟩ = πw2E2

4η
, (C.4)

which is consistent with well-established formalism [5, 20].

C.2 Two Gaussian Beams

Now let’s examine the interference of two ideal TEM00 beams with distinct frequencies, and

consider their interference at a mutual focal plane (the surface of some imagined detector)

where both wavefronts are flat, but may have differing temporal phase. By the principle of

superposition, the total electric field is simply the sum,

#–

Etot(
#–x , t) =

#–

E1(
#–x , t) +

#–

E2(
#–x , t)

= E1(
#–x ) cos [Φ1(t)] p̂1 + E2(

#–x ) cos [Φ1(t)] p̂2

= Re
{
E1(

#–x )eiΦ1(t) p̂1 + E2(
#–x )eiΦ2(t) p̂2

}
.

(C.5)

Following the same general procedure as before, let’s consider the optical power of this

superposition, first using the sinusoidal form of the expression for the total field. The

polarizations are assumed to be aligned so that p̂1 = p̂2, noting that the interfering portion

of the final power would be suppressed by p̂1 · p̂2 = cos θ for some misalignment θ between

the polarizations. This yields,

⟨P⟩ =
∫
dA

〈
1

η

∣∣∣ #–

Etot(
#–x , t)

∣∣∣2〉
=

1

η

∫
dA

〈
|E1(

#–x ) cos [Φ1(t)] p̂1 + E2(
#–x ) cos [Φ1(t)] p̂2|2

〉
=

1

η

∫
dA

〈
E1(

#–x )2 cos [Φ1(t)]
2 + E2(

#–x )2 cos [Φ2(t)]
2

+ 2E1(
#–x )E2(

#–x ) cos [Φ1(t)] cos [Φ2(t)]
〉

=
πw2

1E
2
1

4η
+
πw2

2E
2
2

4η
+
E1E2

η

〈
cos [Φ1(t)] cos [Φ2(t)]

〉∫
dA e

−| #–x |2

w2
1 e

−| #–x |2

w2
2

= ⟨P1⟩+ ⟨P2⟩+
2E1E2

η

〈
1

2
{cos [ΣΦ(t)] + cos [∆Φ(t)]}

〉(
πw2

1w
2
2

w2
1 + w2

2

)
,

(C.6)

where ΣΦ(t) ≡ Φ1(t) + Φ2(t) and ∆Φ(t) ≡ Φ1(t) − Φ2(t) are defined for brevity, and the
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result from Equation (C.2) is used. The term oscillating at ΣΦ(t) is clearly well above

detector bandwidth and thus has a trivial time-average, but the ∆Φ(t) will stay around as

it is assumed that (ω1 − ω2) is within the detector bandwidth (by design!). Thus,

⟨P⟩ = ⟨P1⟩+ ⟨P2⟩+
πw2

1w
2
2E1E2

η(w2
1 + w2

2)
cos [∆Φ(t)]

= ⟨P1⟩+ ⟨P2⟩+
4w1w2

w2
1 + w2

2

√
⟨P1⟩ ⟨P2⟩ cos [∆ω t+∆ϕ],

(C.7)

where the relation from Equation (C.2) has been used to replace Ei with ⟨Pi⟩, and defined the

difference/interference frequency ∆ω ≡ ω1−ω2 and the phase offset ∆ϕ ≡ ϕ1−ϕ2. If w1 = w2

and ⟨P1⟩ = ⟨P2⟩, then a familiar result is recovered: ⟨P⟩ = 2 ⟨P1,2⟩ [1 + cos (∆ω t+∆ϕ)],

i.e. that the total incident power of the interference of two co-aligned Gaussian beams with

the same spatial mode, but different frequencies, oscillates between 0 and 4× the individual

beam power [5, 20].

Now let’s do the same thing with phasors, using the usual formula for the squared-norm

of a complex quantity,

⟨P⟩ =
∫
dA

〈
1

η

∣∣∣ #–

Etot(
#–x , t)

∣∣∣2〉
=

1

η

∫
dA

〈∣∣∣E1(
#–x )eiΦ1(t) p̂1 + E2(

#–x )eiΦ2(t) p̂2

∣∣∣2〉
=

1

η

∫
dA

〈
E1(

#–x )2 + E2(
#–x )2 + E1(

#–x )E2(
#–x )
(
ei[Φ1(t)−Φ2(t)] + ei[Φ2(t)−Φ1(t)]

)〉
=
πw2

1E
2
1

2η
+
πw2

2E
2
2

2η
+
E1E2

η
⟨2 cos [∆Φ(t)]⟩

∫
dA e

−| #–x |2

w2
1 e

−| #–x |2

w2
2

= 2 ⟨P1⟩+ 2 ⟨P2⟩+
2E1E2

η
cos [∆Φ(t)]

(
πw2

1w
2
2

w2
1 + w2

2

)
= 2 ⟨P1⟩+ 2 ⟨P2⟩+

8w1w2

w2
1 + w2

2

√
⟨P1⟩ ⟨P2⟩ cos [∆ω t+∆ϕ],

(C.8)

where Euler’s formula, 2 cosϕ = eiϕ + e−iϕ, has been employed. Thus we find the same

result: if one uses phasors and proceeds naïvely, ignorant of the underlying complexities,

then the total, time-averaged power computed needs an extra factor of (1/2) in order to

match the correct result,

⟨P⟩correct =
1

2
⟨P⟩phasors . (C.9)



Appendix D

System Control

and Data Acquisition

As the text may allude, there is a vast array of hardware and instrumentation for the table-

top experiment that this thesis describes. The control of and subsequent data acquisition

from this apparatus, the focus of this Appendix, is centralized to a single computer, with

a number of peripherals. There are a few “aged” instruments that are immune to remote

control (either digital or analog), but for the most part, the single central computer provides

the user interface with the apparatus and manages the analog-to-digital conversions, as well

as the digital-to-analog conversions.

Generally speaking, the controls and data acquisition are divided into two groups: fast

and slow. The fast control and acquisition is accomplished with National Instruments hard-

ware housed within the host PC or an external PXI chassis, making use of LabVIEW as

an interface. Various slow controls are achieved with USB, RS-232, and GPIB protocols,

essentially using whatever input the instrument in question has available. A small subset

of slow controls are implemented with a National Instruments Compact FieldPoint system,

although this hardware is outdated and can’t interface with newer versions of LabVIEW.

D.1 Controllers and Their Assignments

The various control systems are tabulated below, with a short verbal description of the device

function. Further details will be provided later in relation to the specific tasks performed,

such as digitization.

219
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Table D.1: Components housed within the central PXI-1042 chassis and their functions.

Model Function Use

PXI-8331 Controller Communication between host PC
and PXI chassis, data transfer

PXI-7854R FPGA with integrated
ADCs and DACs
(both 16-bit)

Primary signal digitization, digital
demodulation, active feedback,
synchronization

PXI-6259 Reconfigurable
analog/digital inputs
and outputs (both
16-bit)

Electrode and stage monitors,
high-frequency digitization for
rotational signal

PXI-6723 Multi-channel analog
output (13-bit)

Electrode driver, attractor stage
driver

PXI-6229 Reconfigurable
analog/digital inputs
and outputs (both
16-bit)

Valve control for main vacuum
system, pressure and temperature
monitors

D.1.1 PXI Hardware

Nearly all of the fast digitization and signal generation is performed with hardware conform-

ing to the PCI eXtensions for Instrumentation (PXI) platform, specifically from National

Instruments. A chassis houses the various hardware units, listed in Table D.1, providing

power and interconnectivity. A controller module within the chassis communicates with

a companion module within the host PC and allows commands to be sent to individual

hardware units, as well as facilitates data transfer for offline analysis. Virtual instruments

that interface with and make use of these hardware units are created with LabVIEW and

executed on the host PC.

The chassis itself provides a hardware synchronization interface, with a 10MHz analog

output that can be used to phase-lock the digital timebase of other instruments, a critical

feature for phase-locked digital demodulation. The interface also has an analog input that

can be used to synchronize the master timebase within the PXI chassis to any external

10MHz source. A number of different synchronization configurations have been explored

and tested, the most robust being the use of a stable external signal to which the chassis

locks, together with other instruments.
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Table D.2: PCIe components housed within the host PC and their functions.

Model Function Use

PCIe-7841 FPGA with integrated
ADCs and DACs
(both 16-bit)

Multi-channel DDS for generating
phase-continuous rotational drive
signals, and feedback for a single
rotational degree of freedom

StarTech
PEX2PCIE4L

PCIe to PCI/PCIe
Expansion Chassis

Provides PCI slot (not in computer)
for the controller module for the
main PXI chassis

D.1.2 PCIe Hardware

The FPGA module used for the primary signal digitization (coordinates x, y, z, power P) is

at nearly full utilization1 with the various timekeeping/synchronization tasks, demodulation,

downsampling, and finally feedback signal generation. As a result, the whole apparatus

requires extra hardware in order perform similar functions, but for different input signals

and/or possible actuators. The most obvious solution would be a secondary FPGA module

within the PXI chassis, but for economical reasons, the old FPGA module from the first

iteration of the apparatus was repurposed. This old module has a PCIe form factor, and

thus can sit directly inside the host PC without an external chassis or a separate controller.

Its inputs and outputs are dedicated to signals and controls for the rotational degrees of

freedom of a trapped microsphere.

As mentioned briefly, the PXI chassis connects to the host PC via a pair of modules. The

module on the PC side of things (as opposed to the one within the chassis itself) is actually

a PCI (not PCIe) form factor, and the motherboard within the control computer does not

have any PCI slots, as most newer systems have transitioned entirely to PCIe. Thus, in

order to connect to and control the PXI hardware, there is a PCIe-to-PCI/PCIe expansion

chassis. Despite the existence of this nested hardware, the host PC just “sees” the expansion

chassis as normal components, as if they were plugged directly into the motherboard. This

subtlety will be ignored beyond the acknowledgment within this section.

1This is likely a result of poor optimization on the part of the user. To ease the digital signal processing and
remove concerns about data loss from various operations that might result in overflow or changes in numerical
precision, the digitized 16-bit signals end up being stored in 32-bit, and sometimes 64-bit, datatypes. Thus,
any digital buses, shift registers, buffers, etc. need the same bit-width, which can significantly increase the
required elements within the FPGA itself.
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Table D.3: Components housed within the auxiliary cFP-1808 chassis and their functions.

Model Function Use

cFP-AI-112 ADC module (16-bit) Dedicated to various power and
fault monitors for the fiber-optic
laser amplifier

cFP-AO-210 DAC module (12-bit) Enable/disable and level control for
laser amplifier

cFP-DO-400 Sourcing digital
output module

Valve control for custom gas
manifold

D.1.3 Compact FieldPoint

The Nufern fiber-optic laser amplifier in use on this setup intentionally does not have a stan-

dalone controller and is instead controlled and monitored directly by Compact FieldPoint

(cFP) hardware and LabVIEW VIs. The amplifier has a 25-pin DSUB connector, with TTL

level enable pins and fault monitors (i.e. power fault, high back-reflection fault), as well

as an analog control to set the output level and analog power monitors from photodiodes

within the amplifier itself. All of the inputs and outputs for the laser amplifier control can

be effectively handled with two dedicated ADC and DAC modules, respectively. The cFP

hardware is advantageous for this application, as the outputs are meant to run continuously

(the laser amplifier has a long stabilization time, so enabling and/or changing output level

incurs a time cost), unlike much of the PXI hardware which executes output tasks and

digitizations in triggered bursts.

The cFP hardware also serves a secondary purpose: controlling the valves within the

custom gas manifold discussed in Section 2.1.1. A digital output cFP module that can

source significant current to multiple channels is used to drive electronic relays, which in

turn actuate the solenoid valves controlling the compressed air, which then actuate the

pneumatically-driven valves controlling gas flow within the manifold and thus to the cham-

ber. There is a 1-1-1 correspondence, so each digital output drives a unique relay, solenoid

valve, and finally pneumatic valve, in order to fill the manifold with a single gas species, or

open the manifold to its dedicated scroll pump.

Given that these two functions are relatively straightforward and explained in full above,

this control hardware and its application will not be discussed further in this chapter.
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Table D.4: Instruments controlled with a single GPIB Hub, the NI-GPIB-HS, connected to
the host PC via USB.

Model Function Use

SG382 RF Signal Generator Generates 150MHz drive for
trapping beam AOM, with
amplitude modulation for axial
feedback

HP8643A RF Signal Generator Generates 143.375MHz drive for
reference beam AOM

HP3325B Function Generator General purpose, multiple
applications including chirp drive
signal for piezo-launcher based
microsphere trapping

WW5064 Arbitrary Waveform
Generator

General purpose, multiple
applications including electrode
driver

D.1.4 GPIB

The IEEE-488/General Purpose Interface Bus (GPIB) is a digital bus and communica-

tions protocol that was developed in the early 1960’s by Hewlett-Packard (called HP-IB at

the time). Despite it’s age, GPIB is still used quite frequently for test and measurement

equipment due to the proliferation of the standard, as well as the unique feature that the

connectors are stackable, meaning instrument connections can be daisy-chained, up to a to-

tal of 15 instruments given the 4-bit addressing used. Each device connected to the bus can

“take control”, sending commands to other connected devices and reading any subsequent

responses, whilst locking out commands from other devices.

In this apparatus, the host PC is connected via a single USB to a National Instruments

GPIB Hub, which in turn is daisy-chained to a number of signal-generators. Instrument

setup commands (waveform type, amplitude, frequency, offsets) are sent to the GPIB hub

as ASCII-encoded strings with specific destination addresses, which then get forwarded

along to the individual instruments specified by the addresses. It should be noted that most

instruments have unique and very specific formats for these command strings. At the time

of writing, each device listed in Table D.4 has a publicly available operations manual with

details concerning the format and syntax of the accepted GPIB commands.



224 APPENDIX D. CONTROL AND DAQ

Table D.5: Instruments connected to the host PC via USB.

Model Function Use

PS-5 Ethernal
Laser
Controller

Controller for the
primary Orbits
Lightwave Yb-fiber
seed laser

Sets optical pump power, monitors
temperature throughout the laser
module itself, provides both
hardware (turn-key) and software
enable

CLD1015 Laser diode and TEC
controller for butterfly
packages

Controls the laser illumination for
the top-view microscope

EO-0513 Color CMOS camera Side-view microscope to verify if a
microsphere is trapped, and roughly
determine height within the trap

Mako U-029B Monochrome CMOS
camera

Top-view microscope to assess and
refine alignment of mechanical
devices in proximity to a trapped
microsphere

WW5064 Arbitrary Waveform
Generator

General purpose, multiple
applications including electrode
driver

D.1.5 USB, Serial, and Ethernet

Any device not included in the previous sections is likely connected to the host PC via USB,

or else not amenable to remote control. However, many older instruments and peripheral

devices use the serial communications protocol RS-232 and 9-pin DSUB connectors, while

newer instruments use USB. Instruments within this apparatus requiring RS-232 are con-

nected to the host PC via USB-to-RS-232 converters, and appear as serial “COM” ports,

assuming the correct drivers have been installed. ASCII- or byte-string commands can then

be sent via a serial communications protocol to be interpreted by the instruments, and

queried values or instrument states can be returned to the host PC.

A single instrument, a residual gas analyzer (MKS, eVision+), makes use of ethernet

to communicate with a host computer. Proprietary software running on the host PC can

identify and communicate with any instruments connected to the local network.
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D.2 LabVIEW Primer

In nearly all of the methods discussed below, the control and data acquisition hardware is in-

terfaced and controlled with LabVIEW running on a single host PC. The specific implemen-

tation within LabVIEW is available to the interested reader via a GitHub repository [223],

however it should be noted that this is only one particular implementation, and likely a

sub-optimal one. Not only can the same tasks be accomplished with different frameworks

entirely within LabVIEW, but low-level control could also be implemented by directly in-

terfacing with the PXI chassis and the instruments within, given that PXI is an industry

standard, although one invented and championed by National Instruments.

As such, we refrain from including specifics of the LabVIEW and instead focus on the

hardware and its configuration for a desired control or data acquisition task at hand.

D.3 Analog Signal Production

Despite the apparent complexity of this apparatus, there are a limited number of analog

signals that are applied at any given time. Once a trapped microsphere has been lowered

to the focus, feedback has been engaged, and the experimental chamber has been brought

to high vacuum, the only driven inputs to the system are the AOM RF drives, the feedback

signals, the electrode voltages, and the attractor stage drive signals.

D.3.1 Synthesizers

Two different RF synthesizers are used to drive the fiber-coupled AOMs that control the total

amount of light in the trapping and reference beams. Both are operated in a continuous

fashion, with level control implemented via built-in amplitude modulation, whose source

signals will be discussed in the next section.

The trapping beam synthesizer is a Stanford Research Systems SG382, capable of pro-

ducing signals up to 2GHz. The synthesizer output first passes through a 10 dB attenuator

before being sent to a broadband amplifier with a gain of 30 dB (MiniCircuits, ZHL-03-

5WF+). The amplified signal passes through another 10 dB attenuator before driving the

AOM itself. The repeated attenuators have a dual purpose: first and foremost they provide

a degree of protection for the RF electronics, from both over-driving any of the components

and from any reflections due to mismatched impedances, as reflections must pass through
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each attenuator twice, preventing damage to the active components; the attenuators can also

be swapped out for different values to tune the dynamic range of the control over optical

power, a critical feature if the apparatus is to be used with different sizes of microspheres,

which require different optical power to levitated at the focus of the vertically-oriented,

gravity-stabilized optical trap used here.

It serves to elaborate slightly on these. Firstly, the input of the RF amplifier can only

accept up to +10 dBm signal without suffering damage, while the synthesizer full-scale is

+13 dBm. Some amount of attenuation here prevents over-driving the amplifier. Similarly,

the AOM can only accept up to +33 dBm of RF power without suffering damage. Thus,

the second 10 dB attenuator prevents the amplifier from over-driving the AOM, regardless

of input level, and is left permanently affixed. The first attenuator, as well as control of

the synthesizer’s full-scale, can be modified to tune the maximum optical power, which

necessarily sets the dynamic range since the modulation port is driven with 16-bit DAC,

yielding a resolution of roughly 1/(216 − 1) of the full-scale.

The reference beam synthesizer is a Hewlett Packard HP8643A, capable of producing

signals up to 1GHz. As with the trapping beam synthesizer, the reference beam synthesizer

output first passes through a 10 dB attenuator before being sent to a broadband amplifier

with a gain of 37 dB (EIN, 400AP). The amplified signal passes through another 6 dB at-

tenuator before driving the trapping beam AOM. This RF drive is usually left at a constant

value, so that the reference beam is both constant and stationary. Future improvements

of the apparatus may make use of active level control here to stabilize the interference

measurements against amplitude fluctuations, since the oscillating interference signals are

proportional to the square root of the beam power.

D.3.2 Feedback Signals

There are a total of three feedback signals and their associated actuators for active stabi-

lization of a trapped microsphere’s translational degrees of freedom. All three signals are

first generated digitally within the primary FPGA (to be discussed below), and subsequently

converted to analog voltages by ±10V, 16-bit DACs, operating at 5 kHz, well above the nat-

ural resonant frequencies of the microsphere center-of-mass motion. However, this voltage

range is too large for all of the feedback actuators, thus requiring a degree of level-control.

The amplitude modulation port for the trapping beam synthesizer accepts a ±1V signal

for RF amplitudes from 0 to full-scale. To adapt to this input, the z/axial feedback signal
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from the primary FPGA drives a simple 10:1 voltage divider, passively converting the ±10V

down to ±1V, whose output is connected directly to the synthesizer modulation input. The

FPGA output impedance and modulation port input impedance are sufficiently low- and

high-impedance that the voltage divider can be constructed with a variety of resistor values,

where 10 kΩ and 90 kΩ have been chosen to accomplish the 10:1 division.

For the radial degrees of freedom, a piezoelectrically-driven deflector mirror serves as the

feedback actuator in order to control the radial position of the trap (see Chapter 2). The

deflector requires relatively high voltage, 0V to 75V,2 as well as an output with a large slew

rate in order to drive the capacitive load presented by the piezoelectric chip. A dedicated

piezoelectric amplifier (Thorlabs, MDT693A) is used to drive the two orthogonal deflections

of the trapping beam, although this amplifier has a full-scale of 150V set by an analog input

of 0V to 10V. Given the positive-definite nature of the required drive voltage, an active

circuit is employed to adjust the ±10V output from the FPGA. This level-control circuit,

documented in Appendix E, divides the signal by a factor of four and adds a bias of 2.5V.

Thus the ±10V is converted to 0V to 5V, which in turn yields a deflector drive voltage of

0V to 75V following amplification.

D.3.3 Electrode and Stage Drives

The final collection of signals required for control of the apparatus are drive signals for the

electrodes and the nano-positioning stage that controls the motion of the attractor device

used in the fundamental science measurements. The electrodes have two different drive

systems for distinct applications, one of which shares hardware with the stage driver and

thus is discussed here. This first system makes use of a dedicated PXI module, the PXI-6723,

which has a total of 32 ±10V, 13-bit DACs, also operated at 5 kHz. By virtue of the PXI

chassis synchronization, these outputs are triggered simultaneously with digitization tasks,

and phase-locked to other signal sources.

Given that the hardware is controlled and operated by LabVIEW, there exists a well-

defined formalism to programmatically define desired output signals with a fixed length

(DAQmx tasks). These can be simple sinusoids, or arbitrarily defined waveforms with com-

plex spectral content, the latter being specifically useful for testing the frequency-response

of a trapped microsphere.

2Piezoelectric chips generally do not like negative voltages, thus passive voltage division is not a viable
solution to use the full dynamic range of the FPGA.
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A total of 11 of the 32 output channels are used: three for the x, y, and z degrees of

freedom of the attractor’s nano-positioning stage, and eight for the electrodes (there are 6

truncated, pyramidal electrodes surrounding the trap, together with the attractor and shield

which can be independently biased). The electrode signals output from the PXI-6723 are

buffered by a unity-gain amplifier circuit which also produces a separate 1:1 monitor signal

to be digitized and stored for offline analysis. Thus the range of applicable voltages for the

electrodes is simply ±10V. Further amplification can be used if different signal levels are

required.

The attractor’s nano-positioning stage accepts 0V to 10V signals, so an active level

control circuit (see Appendix E) is used to divide the ±10V by a factor of two, and add a

5V DC offset. These adjusted signals are then sent to the stage driver to control the attrac-

tor’s position. The position of the attractor’s stage is measured by internal strain gauges

(for closed-loop control of the hysteric piezos), with output monitor ports for subsequent

digitization and offline analysis.

D.3.4 DDS Electrode Drive

While the simultaneously triggered drive signals and digitization tasks are critical for a

number of applications, most notably force-sensing, there are some instances where a drive

signal must be continuous for long periods of time, usually much longer than an individual

drive/digitization task (usually these are about 10 s long). For example, if the rotational

drive signals used in Chapter 5 were to turn off at regular intervals set by the finite-length

drive/digitization tasks, the orientation of a trapped microsphere’s dipole moment would

easily become uncorrelated with the phase of the spinning field, and many of the mea-

surements detailed in that chapter would be fundamentally impossible. At the same time,

these measurements require well-defined phase relationships, ±π/2 rad, between neighboring

electrode drives in order to produce the necessary spinning fields.

In order to generate phase-continuous and indefinite drive signals for the electrodes, a

direct digital synthesis (DDS) drive system is implemented within an FPGA. This makes use

of a secondary FPGA module with a PCIe form factor that sits directly inside the host PC.

The centerpiece of this system is a single DDS set to one specific frequency, which outputs

both sine and cosine components (∆ϕ = ±π/2 rad). These outputs can then be duplicated

and inverted in order to generate the four, properly phased, sinusoids necessary to drive a

rotating electric field with four of the trapping electrodes. The signals are generated and
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scaled digitally, then sent to dedicated, ±10V, 16-bit DACs operated at 500 kHz, where the

much larger bandwidth is critical for high-frequency spinning applications.

This signal generation structure is also convenient for planned future developments of

the apparatus, as a phase modulation of the centerpiece DDS results in a common-mode

phase modulation of each of the electrodes, corresponding to a modulation of the rotating

electric field’s angle relative to unmodulated rotating reference frame.

D.4 FPGA-based Digital Demodulation and Feedback

The central hardware component for the system control and data acquisition is the PXI

chassis, which houses a number of different modules with various tasks. All modules are

from National Instruments and interface natively with LabVIEW for programmatic control.

There are a huge number of subtleties and intricacies to proper LabVIEW programming,

and it’s quite likely that not everything was implemented in the most optimal manner.

Additionally, successive versions of LabVIEW always seem to change some important aspect

of the LabVIEW programming, such that new projects may not be able to implement

the same code structure as older projects using different versions of LabVIEW. Thus, the

following sections will focus on effective descriptions while, for the interested reader, full

details can be obtained by perusing the GitHub repository for the control computer [223].

The most critical module within the PXI chassis is the FPGA module that manages the

primary signal digitization and demodulation, as well as the calculation and generation of the

feedback signals used to actuate various hardware components of the apparatus. Amplified

interference signals are sent from the QPD and the retroreflected PD directly to 16-bit ADC

inputs embedded within the FPGA module, where the signals are subsequently demodulated

to produce digital estimates of the amplitude and phase of each of the digitized interference

signals. The details of this demodulation are discussed in the next section, followed by a

description of the implementation in LabVIEW. In addition to the interference signals, the

FPGA module also digitizes the amplified output from the power-monitoring photodiode,

although this doesn’t not require the same demodulation as the primary interference signals

that encode the motion of the trapped microsphere.

Once the interference signals have been demodulated, estimates of the microsphere dis-

placement are calculated from the signal amplitudes and phases. These estimates are com-

pared to desired setpoints (determined empirically and set externally), to generate an error
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signal for feedback, in particular: proportional, integral, and derivative (PID) feedback,

which was discussed in Section 2.7.

A critical feature of the implementation of the digital demodulation as described is

the phase-locking of the signal generators and the primary ADCs. Both the SG382 and

the HP8634A signal generators, as well as the PXI chassis itself, include connections for

synchronizing with external timebases, based on a shared 10MHz timing signal that can be

sourced by any of the three instruments. The most reliable phase-locking has been found

with the SG382 acting as the primary source for the timebase, which is then shared with the

PXI chassis, and further redistributed to the HP8643A and any other instruments.3 Within

the PXI chassis, backplane connections allow the distribution and subsequent use of this

timing signal by each of the modules, usually as triggers for the ADCs and DACs.

The FPGA module itself is configured and controlled with LabVIEW. Specifically, a

LabVIEW FPGA project involves two executables that are intimately connected, one that

operates within the FPGA, and one that operates on the host PC. Both are configured to

run independently, although the host PC can write digital values to shift registers within

the FPGA in order to adjust settings such as feedback strength, setpoints, digital variable

scaling, and sampling frequency. Importantly, the host PC and FPGA are setup with Direct

Memory Access (DMA) First-In First-Out (FIFO) buffers, so that when triggered, the host

PC can extract data stored within the FPGA, such as the estimates of the microsphere

position and the demodulated amplitudes and phases.

D.4.1 Timekeeping

Although the FPGA is the source of the primary signals (x, y, z, power P), other hardware

elements within the PXI chassis and otherwise connected to the host PC digitize signals of

importance, such as electrode voltage monitors. It is important that these digitized signals

can be synchronized in time with one another, for such things as a proper measurement

of a trapped microsphere’s frequency response. A nearly universal and easy to manage

representation of time is the Unix epoch, a measure of the number of seconds that have

transpired since January 1, 1970. All modern computers keep track of this epoch, often

synchronizing to GPS time to account for slight variations and imperfections in their own
3Although all of the instruments expect a timing signal with a frequency of 10MHz, they have differ-

ent input impedances and amplitude requirements/limitations. This particular timing configuration best
matched the requirements of our specific signal generators, and appeared to generate the least phase noise,
as observed with the digital demodulation.
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internal clock. The FPGA, much like a computer, can keep track of this number with an

internal counter. Often, this is a 64-bit counter, where the 64-bit integer represents the

number of nanoseconds since 1/1/1970.

The first level of timekeeping/synchronization matches the 64-bit counter within the

FPGA to the 64-bit counter within the host PC, which is assumed to be synchronized with

GPS time by virtue of the operating system and a robust internet connection. Once every

second, when not actively sampling and transferring data for offline storage, the FPGA

queries the counter within the host PC and loads this value into it’s own counter from

which it continues counting up. In this way, the FPGA and host PC maintain consistent

timekeeping so that data associated with particular timestamps can be compared. This is

sufficient to match slow environmental monitors to the data digitized by the FPGA module.

For faster, synchronous digitization between multiple modules with ADCs, a more cre-

ative solution was required. In an ideal world, backplane triggers from the PXI chassis

could easily be distributed among different modules, but the different acquisition structure

naively prevents this. Dedicated digitizer modules that have been properly configured to

operate based on external triggers can immediately begin digitizing once the trigger has

been received. The FPGA, however, is always running, generating values of x, y, and z

continuously in order to maintain active feedback. LabVIEW’s interaction with DMA FI-

FOs is structured such that unless those values are being read out constantly, the buffer fills

up and ceases to record new data. Thus, instead of constantly writing data into a FIFO,

reading it out on the PC, and then discarding unwanted values (an extremely CPU intensive

operation), a external trigger tells the FPGA to begin writing values to the FIFO at the

same as the PC starts to read the values, thus preventing pile-up.

Here’s where it gets interesting: some aspect of this FIFO startup is non-deterministic

and asynchronous, likely depending on current CPU load and/or interrupt time. If the

same PXI trigger is sent to the FPGA module and the dedicated digitizer modules, the

DMA FIFOs on the FPGA start and end late, with a quasi-random delay compared to

the other digitizers. This is clearly problematic. The adopted solution instead has one of

the digitizer modules generate an extremely specific TTL-encoded digital sequence4, where

the sequence starts at the same time as the first sample of the properly-triggered digitizer.

This synchronization sequence drives a digital input on the FPGA module, so that the

FPGA can correlate the measured sequence with the expected sequence, essentially allowing

4The sequence is a UTC-8 encoded byte string that says “At least it’s not barium tagging”.
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a determination of the first sample’s position in time. If the FPGA is triggered prior to

the other modules and set to digitize a little longer than would normally be necessary, then

it records all of the relevant data plus some extra samples before and after the nominal

digitization period, as set by the dedicated digitizer modules.

Validating the synchronization and cropping the excess FPGA data happens offline, just

prior to analysis. The raw data files stored include the excess samples.

D.4.2 Digital Demodulation

Generally speaking, heterodyne interference measurements involve mixing two higher fre-

quencies down to a moderate difference frequency, where the amplitude and phase of the

signal oscillating at the difference frequency encode the desired information to be mea-

sured. The first mixing occurs in the interference between the reference wavefronts and the

transmitted/retroreflected wavefronts, shifting the signal from PHz down to ∼kHz. Thus,

measuring the amplitude and phase of an oscillating signal are critical for the work described

here, which have been accomplished with a technique called digital demodulation.

Consider a generic oscillating signal with amplitude A, frequency f , and arbitrary phase

ϕ: A(t) = A cos(2πft+ ϕ), which, in our case, can represent an oscillating voltage from the

output of a photodetector and transimpedance amplification circuit. Now, assume that this

signal is phase-locked with the sample clock of an ADC, which can easily be accomplished

by sharing timebases between the signal generator(s) and the ADC, with built-in hardware.

If the ADC is sampling at a frequency fADC such that f = 4(f%fADC) where % is the

modulus operator, then successive ADC samples Ai are spaced by (2πn + π/2), with n an

integer, and thus,

Ai = A



sin(ϕ) i = 1, 5, . . .

−cos(ϕ) i = 2, 6, . . .

−sin(ϕ) i = 3, 7, . . .

cos(ϕ) i = 4, 8, . . .

, (D.1)

which is depicted schematically in Figure D.1.

The amplitude and phase, i.e. the variables encoding our desired measurement, can then
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Figure D.1: A cartoon depiction of digital demodulation. The arbitrary phase ϕ from
Equation. (D.1) was set to 0 for simplicity.

be recovered from the signal samples as,

A =
√
A2

i +A2
i+1 ϕ =



arctan( Ai
−Ai+1

) i = 1, 5, . . .

arctan(−Ai+1

−Ai
) i = 2, 6, . . .

arctan( −Ai
Ai+1

) i = 3, 7, . . .

arctan(Ai+1

Ai
) i = 4, 8, . . .

, (D.2)

making use of the identities sin2+cos2 = 1 and tan = sin / cos. If the amplitude, A, and

phase, ϕ, are time-dependent, but their changes are slow compared to the carrier frequency

f , then these variables provide robust estimates of the amplitude and phase of the signal

of interest, in real-time. These estimates of A and ϕ are computed within the FPGA that

is integrated with the ADCs sampling the signal. The details of this implementation are

discussed in the next section.

This procedure naturally depends on the spectral purity of the signal to be demodu-

lated. Significant oscillating components at different frequencies will still “make it through”

the digital demodulation algorithm, introducing offsets and/or oscillating estimates of the

amplitude and phase. The amplifier circuits for the QPD and the retroreflected photodiode

include significant active filtering to ensure the output is nominally a single tone, although

the bandwidth is not particularly narrow.
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D.4.3 FPGA Signal Processing

There are five oscillating signals that are demodulated: four from the quadrant photodiode,

and a single one from the retroreflected photodiode. An identical demodulation procedure

is used for each of the five signals, so the following discussion will pertain to one such signal.

Firstly, each oscillating signal is digitized with a 16-bit differential ADC, resulting in a

signed 16-bit integer for each sample. Although reconfigurable, the ADC is usually fixed

to sample at 500 kHz, for a phase-locked interference signal at either 125 kHz or 625 kHz.

There is some inherent and common-mode phase shift between the sample clock and the

interference signals, likely from the synchronization of timebases, but this is unimportant

for the horizontal degrees of freedom, while the “origin” of the vertical degree of freedom is

determined empirically as discussed in Section 2.6.

The sampling rate of the ADC drives all of the successive operations within the FPGA,

so that they all operate at 500 kHz or integer divisions of this sampling frequency, as calcu-

lations based on these signals need only occur each time there is a new sample. Generally

speaking, within the FPGA there are a number of looping operations that run in parallel

and share data with one another. For example, the simultaneous sampling happens within

a single loop, with samples being sent to a demodulation loop, the output of which is sent

to a downsampling loop, which in turn is sent to the feedback and data transfer loop, all

of which are operating synchronously, triggered by data transfer from a previous loop in

the pipelined analysis chain. Generally, we followed guidelines and suggestions, i.e. data

pipelining and parallel execution, provided by National Instruments in order to make the

best use of the FPGA [224].

Since estimates of the amplitude and phase, Equation (D.2), require neighboring samples,

the FPGA retains two samples at all times, from the current timestep i, Ai, as well as the

previous timestep, Ai−1. The amplitude is estimated directly by computing the quantity

A =
√
A2

i +A2
i+1, where the 16-bit integers are first converted to a datatype with a larger

bit-width to accommodate the possible increase in dynamic range and/or requisite numerical

precision5. To estimate the phase, a running modulo-4 counter is maintained to keep track

of which sample is in the numerator/denominator of the argument of the arctangent from

5National Instruments and LabVIEW makes use of a fixed-point datatype, wherein numbers are rep-
resented by a fixed number of bits, with some being dedicated to representing the integer portion of the
number, and the other being dedicated to representing the decimal portion of the number. The fixed bit-
width makes mathematical operations more tractable, increasing data throughput significantly. Although
hugely important, we leave the details of understanding the fixed-point datatype to the interested reader.
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Equation (D.2), and use the Coordinate Rotation Digital Computer (CORDIC) algorithm

to rapidly compute the arctangent with the appropriately signed and ordered ratio of the

successive samples.

The above procedure results in 10 distinct quantities, the amplitudes, {A0, AI, AII, AIII,

AIV}, and phases {ϕ0, ϕI, ϕII, ϕIII, ϕIV} of each of the interference signals, with ‘0’ for the

retroreflected photodiode signal and as before for each quadrant of the QPD: ‘I’ for x, y > 0,

‘II’ for x < 0 ∧ y > 0, ‘III’ for x, y < 0, and ‘IV’ for x > 0 ∧ y < 0. These quantities

are computed at the same rate the signals are digitized, i.e. 500 kHz, although shifted in

time by 3× dt where dt = 1/(500 kHz) is the basic unit of time for the programmed signal

processing in the FPGA, due to the use of data-pipelining as discussed in Reference [224].

The amplitudes and phases are used to estimate x, y, and z as

x =
AI +AIV −AII −AIII∑

iAi
and y =

AI +AII −AIII −AIV∑
iAi

and z = ϕ0. (D.3)

These estimates are further processed in a down-sampling loop, which computes the

sum of 100 estimates and then divides the result by 27 = 128 to approximate an average,

as fixed-point arithmetic with powers of 2 is exceedingly fast, involving only a shift of the

binary decimal point within the representation of the number itself. Once 100 estimates for

each coordinate are collected and an approximation of their average computed, the down-

sampled signals are sent to the feedback loop, which necessarily operates ×100 slower, at a

rate of 5 kHz. Thus, the previous delay of 3 × dt represents a negligible phase shift on the

down-sampled signal, which is used for feedback and offline analysis.

D.4.4 PID Feedback

A general implementation of PID feedback was discussed in Section 2.6, together with an

approximate method for initializing feedback on a newly trapped microsphere. Here, the

FPGA implementation of the various feedback terms will be discussed. It should first be

noted that although the exact datatype (most importantly, the bit-width, which is repre-

sentative of the dynamic range) has not been explicitly mentioned throughout, great care

was taken so that numerical precision is preserved throughout the signal processing. Ba-

sically this amounts to using a datatype with a larger bit-width than necessary, applying

any necessary digital scaling to the numerical value, and casting the final result to whatever

precision is required. This practice certainly makes non-optimal use of the FPGA resources,
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but protects against the loss of information and precision for poorly handled digital typing.

In this apparatus, the initial signals are digitized with 16-bit resolution, which in practice

usually amounts to an actual precision somewhere between 14-bit to 15-bit. The amplitude

estimates can have higher precision than the initially digitized values given the square-root

operation, while the CORDIC algorithm has a user-defined precision, as it’s implemented

with a look-up table that is built when the code is compiled for the FPGA. LabVIEW

automatically determines the necessary output datatype for any mathematical operation

given the 16-bit input signals, but the automatic typing can be somewhat opaque and

difficult to adapt. Additionally, further arithmetic operations may require higher dynamic

range, so for these intermediate steps, the amplitude and phase estimates are cast to a 32-bit

fixed-point datatype, which in turn is reinterpreted as a 32-bit integer 6. It is these 32-bit

integers that are down-sampled and subsequently processed for feedback.

As in Section 2.6, the calculated estimates of xi = {x, y, z} are compared to user-defined

setpoints, x0,i in order to generate error signals ei(tn) = xi(tn) − x0,i, where the time

argument has been explicitly discretized from t → tn to indicate the finite sampling rate.

With these error signals, generating proportional feedback amounts to simple arithmetic

operations, where either input (the error signal or the proportional gain KP,i) can be scaled

arbitrarily to prevent both overflow and underflow.

The integral feedback is implemented with an infinite-time accumulator, wherein succes-

sive values of the error signal ei(tn) are added to a running sum (stored as a 64-bit integer)

which serves as the integral in Equation (2.6). The running sum can be set to 0 arbitrarily

to ‘reset the memory’ of the integral feedback, but this usually need only be done during the

initialization of a trapped microsphere when the z signal is changing significantly while the

microsphere is lowered into position near the focus. The running sum is then multiplied by

the integral gain KI,i to generate integral feedback, with the same flexibility in numerical

scaling to preserve information content.

Finally, the derivative of the signal is approximated by a finite difference between succes-

sive samples: (dxi/ dt)tn ∼ dxi = xi(tn)−xi(tn−1), where the timestep is absorbed into any

arbitrary scaling applied. Feedback generated by this approximation, and pure derivative

feedback in general, is susceptible to ringing when phase shifts become non-negligible near

6It should be noted that the position of the decimal point within the fixed-point datatype is somewhat
irrelevant since the calibration from observed displacements to applied forces is determined empirically, so
the amplitudes and phases are usually ‘reinterpreted’ as 32-bit integers, wherein their bit patterns remain
the same, but the numerical value is scaled arbitrarily.
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the feedback loop’s highest operating frequency. To slightly mitigate this risk, two values

of the finite difference are averaged together, so that the derivative feedback term looks like

KD,i(xi(tn)− xi(tn−2)). A more astute solution would be the approximation of a derivative

generated from the simple linear regression to a limited number of data points (say, 3-4

points in total), since linear regression amounts to just a matrix operation which can be

performed quite rapidly on an FPGA.

All together, the PID signal for a single coordinate at time tn

PIDi = KP,i ei(tn) +KD,i [xi(tn)− xi(tn−2)] +KI,i

∞∑
k=0

ei(tn−k). (D.4)

Once this signal has been computed, with all of the appropriate scaling to prevent over-

and underflow, the result is cast to a 16-bit signed integer in order to conform to the DAC

limitations. The output feedback signals for x and y are sent to an active level control circuit,

which converts signals of ±10V to signals over the range 0V to 5V, which is compatible

with the controller for the piezoelectrically driven deflection mirror. The output feedback

signal for z is sent through a passive voltage divider to reduce the range from ±10V to ±1V,

compatible with the amplitude modulation input on the SG382, which drives the trapping

beam AOM and thus controls the trapping beam power. Both of these level-control circuits

are intended to make the most effective use of the dynamic range of the DACs, using every

bit to span the full range of control.

D.4.5 Data Acquisition for Offline Analysis

Once the estimates of x, y, and z have been computed, reinterpreted as 32-bit integers, and

finally down-sampled, they are written to DMA FIFO buffers for access by the host com-

puter, together with the 16-bit values generated by the PID feedback described previously.

The amplitudes and phases of the interference signals, as well as digitized signal from the

power photodiode, are also down-sampled by the same factor and written to DMA FIFOs.

Due to the intricacies of the actual implementation, LabVIEW only allows for the construc-

tion of FIFO buffers with a length equal to a power of 2, although any number of samples

may be drawn from the FIFO during a read operation, and successive read operations can

occur with 0 sample delay in order to collect long, continuous digitizations. Additionally,

the FPGA module within this apparatus has a limited number of DMA FIFOs (3 transfer

channels, compared to ∼20 unique signals) that can be used to traffic data to the host
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PC. Thus, the samples of x, y, z, the feedback signals, the amplitudes and phases of the

interference signals, and the power are actually interleaved into three different FIFOs, not

to be de-interleaved until offline analysis following transfer to the host PC. The data are

also interleaved with a timestamp from the FPGA’s 64-bit time counter, so that proper

de-interleaving can be verified by finding the regularly spaced, monotonically increasing

“timestamp signal”.

When a user requests some data to be acquired through the LabVIEW interface, the

host PC first configures the dedicated digitizers (setting up the sample clock and specifying

the number of desired samples). Once these modules are ready and waiting for a trigger, the

host PC starts up the DMA FIFOs and begins extracting data from the FPGA. Immediately

after the FIFO read begins, the PXI chassis triggers the dedicated digitizer modules to be-

gin collecting data, as well as sending the synchronization signal discussed previously to the

FPGA. Once the primary digitization task is complete, the FPGA continues storing values

briefly to guarantee overlap, before stopping the FIFOs and resuming normal operation.

During this acquisition period, data is stored within the RAM of the host PC, only to be

written to disk when the acquisition period has finished. This particular architecture natu-

rally sets a limit on the longest digitization period achievable, as the RAM will eventually

fill at which point LabVIEW encounters an error and ceases execution.

For both the dedicated digitizer modules and the FPGA, data is written to disk in a

binary format, stored within two HDF5 files: one for the dedicated digitizer modules and en-

vironmental monitors (managed by the same LabVIEW VI) and one for the FPGA-acquired

data. A few text strings are stored within an XML-encoded “attribute” file, specifying a PC-

derived timestamp for general sorting, as well as the requested sampling rate, number of

samples, and other defining features. Thus for each requested integration, there are three as-

sociated files with identical base-names. The excess integration time required by the FPGA,

as well as the requisite time for all modules to save their data to disk, ends up requiring ap-

proximately 2 s to 3 s between each continuous integration, although more adept LabVIEW

programmers can likely reduce this with proper handshaking as opposed to hard-coded time

delays.

D.4.6 Secondary FPGA for Rotational Degrees of Freedom

In addition to the primary FPGA module within the PXI chassis, there is a secondary

FPGA module with a PCIe form factor that sits directly inside the host PC. This secondary
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FPGA is dedicated to generating the DDS electrode drive signals discussed previously, as

well as digitizing and demodulating the single output from the cross-polarized light monitor

(see Section 2.5). The architecture of the digitization and demodulation is identical to that

which is implemented within the primary FPGA, just limited to a single channel instead of

five, as the secondary FPGA module is slightly older and contains hardware with significant

limitations as compared to the primary.

D.5 Digitization

The primary translational motion and power signals (x, y, z, and P) are necessarily digitized

by the FPGA as part of the active feedback algorithm, and transferred to the host PC via

a DMA system. The remaining signals of interest are the cross-polarized light monitor,

electrode and stage monitor signals, various environmental variables, as well as the occasional

extra photodiode for debugging or alignment purposes. The electrode and stage monitors

provide information about the known (or unknown, but of interest to investigations of new

physics) forces being applied to a trapped microsphere and are thus critical for force-sensing

applications, while the environmental variables are used to better understand background

forces that may be influenced by conditions around the apparatus.

Generally speaking, the techniques and experiments discussed in this thesis make use

of continuous excitation and measurement. Given that infinite length data files are not

tractable, the digitization is segmented in a scheme where signals are acquired continuously

for a short length of time, usually 10 s, and then written to a binary file. The various drive

signals and digitization tasks are then reset and re-executed as many times as is necessary

to perform the measurement. Both types of tasks are triggered simultaneously by dedicated

trigger lines within the backplane of the PXI chassis itself.

D.5.1 Fast Monitor Signals

All of the “fast” signals are digitized by a single PXI module, the PXI-6259, which also

includes analog and digital output channels as a sort of all-in-one solution. The acquisition

portion of the module consists of a pair of 16-bit ADCs, each capable of operating at 1MHz.

Multi-channel acquisition is then accomplished by multiplexing the desired inputs, an opera-

tion that happens entirely within the module itself. For example, if 4 channels are required,

then each can be digitized with a maximum frequency of 500 kHz given the bandwidth
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limitation of the underlying ADCs. Most often, the system is operated with digitization

frequencies of 5 kHz so this rarely presents an issue. For the electrically driven rotation

discussed in Chapter 5, we are interested in much faster signals of order ∼100 kHz, which

limits the number of channels that can be simultaneously digitized. This is not an issue

usually, as information about the attractor stage position is unimportant to the electrically

driven rotation measurements, as a specific example.

Regardless, all signals of interested are input to the digitizer module, and when the user

configures an acquisition task within LabVIEW, a subset of the signals can be chosen for

digitization, leaving the others terminated. For force-sensing measurements, the attractor

stage monitors and electrode drive monitors are critical, so these are all digitized, usually at

the slower rate of 5 kHz used to investigate the translational motion of a trapped microsphere.

If the microsphere is also rotating, the cross-polarized light monitor may contain useful

information, although the rotation frequencies, both driven and observed in the absence of

any drive, are often well above this bandwidth. For rotation measurements, usually the cross-

polarized light monitor and a single electrode drive signal are digitized, where the voltage

on the other three electrodes used to generate the spinning field are inferred from the main

drive signal, given that they are generated by the same DDS module, with common-mode

scale and symmetric amplification. If the rotation frequency is sufficiently low, ≤ 25 kHz,

then all electrode drive signals are digitized.

The acquired signals are then stored in a single binary file separate from the FPGA

data, then synchronized to the FPGA data during offline analysis following the procedure

outlined in the previous section.

D.5.2 Slow Environmental Variables

Two environmental variables may have a non-negligible effect on measurements made with

this apparatus: temperature and atmospheric pressure. The temperature of the lab is nomi-

nally controlled by an HVAC system to within 0.1 °C, although this control results in cyclical

changes of the temperature,7 which have been found to be correlated with certain measure-

ment backgrounds. The air temperature affects air density (and thus index of refraction)

which changes the optical path length of the light in the free-space optics. Temperature

7When the lab warms above the upper threshold of the thermostat’s setting, the HVAC turns on and
cools the lab to lower threshold, at which point it turns off and the lab begins to heat again. This repeats
indefinitely.
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fluctuations of the mechanical components themselves can also induce thermal expansion,

changing the physical distance between various components of the apparatus. Thankfully,

the thermal conductivity of air-matter interfaces is such that the cyclical temperature fluctu-

ations of the air only couple very weakly to the temperature of the mechanical components.

Atmospheric pressure fluctuations have a similar effect to air temperature fluctuations, as

they change the refractive index within the free-space optics and change the optical path

length.

Historically with this apparatus, the temperatures of the air and of the optical table itself

were measured with thermocouples and a dedicated thermocouple readout instrument. Tem-

perature values were then extracted from the readout instrument via GPIB. Atmospheric

pressure was not actively monitored, although superstitious graduate students would often

check local weather conditions in attempt to transfer blame of a non-functional apparatus

to uncontrollable environmental conditions.

With the development of the newest iteration of the apparatus, the environmental vari-

able readout was updated significantly. Both the air temperature as well as the chamber

temperature are now measured with thermistors in a Wheatstone bridge configuration (see

Appendix E). The outputs of these thermistor preamplifiers are sent to a cRIO module

controlled by a dedicated PC. Similarly, an amplified pressure-transducer signal is sent to

the same module. Measurements of temperature and pressure are then acquired at regular

intervals, timestamped, and stored on this dedicated PC. Offline analysis can then make

use of this data, synchronizing it based on the universal timestamping used for all acquired

data.

D.6 Comment on Details Not Included

A large set of details was not included in this Appendix most notably any information

regarding the various interconnects involved in operating the wide range of hardware. This

includes both the connection of electrical signals from high-density connectors to individual

coaxial cables (usually referred as “break-out” boxes), as well as the vacuum feedthroughs to

bring electrical signals inside the main experimental chamber. The solutions implemented in

this apparatus are varied, often custom in nature, and underwent many changes as system

capabilities were expanded. Thus it doesn’t serve to explain them here.



242 APPENDIX D. CONTROL AND DAQ



Appendix E

Custom Analog Circuits

Wherever possible in this apparatus, consumer/off-the-shelf electronics were used, as these

tend to be reliable and well-tested solutions to known problems. Occasionally, however, a

specific amplification or coupling behavior is required that may not be commonplace and

thus has no consumer solution. In these few instances, we devised and constructed our own

circuits.

For a few of the earlier circuits, a very basic schematic and printed circuit board (PCB)

layout program suite was used: ExpressSCH and ExpressPCB, the latter also being the name

of the board manufacturer. These programs have a few features that make them attractive

as an entry-level design suite, including a built-in online ordering system, as well as layout

tools that only allow the user to draw features that are actually manufacturable. However,

earlier versions of the software did not include automatic PCB and schematic linking and

synchronization, and custom board sizing beyond an automatic standard was not feasible.

As a result of these (relatively minor) limitations, circuit design was transitioned to EA-

GLE, part of the Autodesk suite. EAGLE is incredibly sophisticated by comparison and has

capabilities well beyond anything required. Design files for the circuits documented here can

be requested from the author. This appendix will only include surface level documentation,

given that representation of full circuit schematics or PCB layouts in a thesis formatted for

the standard US-letter sized paper is highly suboptimal.

243
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E.1 Direct QPD Readout

The transmitted light interferometry discussed in Chapter 2 makes use of a quadrant photo-

diode (QPD) in order to image the radial motions of a trapped microsphere. The expected

signal is an interfering optical power, which results in an oscillating photocurrent on each

of the QPD’s segments, expected at 125 kHz or 625 kHz. In the scheme developed for this

thesis work, each quadrant is individually AC-coupled and amplified, with the resulting in-

terference signals sent directly to demodulating analog-to-digital converters (ADCs). This

is accomplished with a single circuit board to which the QPD is directly mounted.

The QPD itself is in a common-cathode configuration, so that all quadrants can share a

reverse bias while producing four distinct photocurrent signals. Each quadrant’s photocur-

rent is first sent through a transimpedance amplifier, which includes a resistive and inductive

shunt in a T-configuration with a AC-coupling capacitor at the non-inverting input of the

op-amp in order to separate the DC component of the interference from the desired oscillat-

ing portion of the interference. This first stage is shown schematically in Figure E.1, together

with a plot of the simulated frequency response. In the passband, the transimpedance gain

is dominated by the feedback resistor, yielding Gt = 104 V/A(= 10 kΩ).

Following the initial photocurrent-to-voltage conversion, the oscillating voltage is further

amplified by an AC-coupled, non-inverting amplifier, which includes a precision variable

resistor to tune the gain of the circuit, from ≤1 V/V up to 50 V/V, and a compensation

capacitor in the feedback path so that this final stage has low-pass filter behavior for anti-

aliasing. The output of the second stage is sent to an board-mounted SMA connector, which

is in turn connected to the analog input of the FPGA. A screenshot of a portion of the full

EAGLE schematic is shown in Figure E.2, detailing this second amplification stage.

The two-stage amplification topology is duplicated a number of times so that the final

board has four independent readouts. The board also includes an excitation input and

jumpers, so that a known current can be injected into the transimpedance amplifier input

in order to tune and calibrate the electronic gain. These gains have been set so that with

a typical microsphere levitated near the focus, an oscillating signal with an amplitude of a

few volts is output from the readout board. This takes advantage of most of the dynamic

range of the ±10V ADC inputs, while also avoiding any saturation effects from operating

closer to the voltage limits.
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Figure E.1: (upper) An LTSpice implementation of a single QPD quadrant and the first
stage of amplification, including a realistic model of both the photodiode itself, as well as
the inductor used to shunt the DC component of the photodiode signal. (lower) Bode plot
of the amplitude and phase of the amplifier response as a function of frequency. A dashed
vertical line indicates the chosen interference frequency of 625 kHz.
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Figure E.2: The second stage of amplification in the direct QPD readout board. An AC-
coupled, non-inverting amplifier, with low-pass behavior for anti-aliasing. “No Connection”
(NC) terminals of the op-amp have been terminated with a resistor and capacitor in parallel,
following guidelines in the manufacturer datasheet.
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Figure E.3: A photograph of the QPD circuit, with the output beam reduction telescope
visible on the left, as well as the reference beam collimator visible in the lower left. A super-
position of the transmitted light and reference beam light is generated with the beamsplitter
cube, and subsequently projected onto the QPD, which has a lens tube serving as shroud in
this image.
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E.2 Retroreflected Interferometry Readout

Naïvely, one might be inclined to use an identical amplification scheme, now with just a

single channel, for the retroreflected photodiode signal. However, this is not the approach

of the currently implemented readout, as the expected power of the retroreflected light is

much smaller than that of the transmitted light.1 It turns out that electronic pickup (as of

yet untraceable) or anomalous pure tones in either the reference beam AOM’s synthesizer

or the associated RF amplifier become non-negligible components of the interference signal

when the reference beam has significantly larger optical power compared to the retrore-

flected beam. Unfortunately, these frequencies are somewhat close to the chosen difference

frequency (for example, one tone has fpickup ≈ 88 kHz while ∆f = 625 kHz), so a reasonably

broad passband, such as that used for the QPD readout, also amplifies these anomalous

signals, contaminating the measurement.

The first stage is identical to that within the QPD readout as seen in Figure E.1, as this

AC-coupled first stage is still necessary to shunt the large DC component of the photodiode

signal (now much larger given the mismatch between reference beam and retroreflected

beam powers). The oscillating voltage from this first stage is then further amplified by an

LC resonant circuit. The quality factor of this circuit is intentionally lower than one might

expect, so that phase modulations of the interference signal, i.e. the portion of the signal

encoding the z-position of a trapped microsphere, are not significantly altered or attenuated.

This is accomplished with a non-inverting amplifier configuration, where an inductor and

capacitor are placed in parallel with the feedback resistor. An LTSpice schematic and

simulated frequency response are shown in Figure E.4. The output of this circuit is sent

directly to a demodulating ADC within the FPGA, in order to recover the phase of the

interference signal and thus the z-position of a trapped microsphere.

1This a result of both the low reflection coefficient, as well as a limited collection efficiency due to apertures
inherent to the isolator.
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Figure E.4: (upper) An LTSpice implementation of the resonant non-inverting amplifier
used as a second stage of the retroreflected interferometry readout (lower) Bode plot of the
amplitude and phase of the amplifier response as a function of frequency. A dashed vertical
line indicates the chosen interference frequency of 625 kHz.
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E.3 Feedback Dynamic Range Control

To take full advantage of the dynamic range of the DACs operating within the active feedback

loop, a level matching circuit is necessary. The level matching circuit is designed to accept

the 16-bit, ±10V output from the DACs, scaling it down by some factor and adding an

offset, the latter feature being necessary for applications requiring positive-definite voltages.

This is accomplished with relatively simple and well-understood circuit topologies. The

FPGA’s output is first buffered with an instrumentation amplifier operating in a unity-

gain configuration. The instrumentation amplifier drives a passive voltage divider which

includes a precision variable resistor to provide control over the scaling factor. The output

of the voltage divider is further buffered by an non-inverting op-amp with unity-gain, where

the op-amp chosen (Texas Instruments, OPA211) is designed to be explicitly stable in this

configuration. The scaled down and buffered output is sent to a simple summing amplifier

composed of an op-amp in an inverting configuration (suggesting that we must be careful

with our factors of -1).

The summing amplifier is used to add a DC bias to the scaled output from the FPGA’s

DACs. A tunable offset in the range −5V to 5V is first generated with a pair of precision

5V voltage references. This is accomplished by tying one reference between ground and the

positive voltage supply, and tying another between ground and the negative voltage supply.

Constant current is drawn through each of the references in order to maintain stable and

continuous operation, while a variable resistor positioned between the referenced outputs

allows selection of an offset voltage anywhere within the range ±5V. A schematic of one

such level-matching channel is shown in Figure E.5.
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Figure E.5: A schematic of the level matching circuit implemented to take full advantage of
the dynamic range of our analog drivers. The output voltage from a DAC within the FPGA
is first buffered by an instrumentation amplifier, whose output drives a resistive divider in
order to scale down the amplitude of the voltage. The output of the resistive divider is
buffered by a unity-gain op-amp and sent to one of two inputs of a summing amplifier. A
tunable DC bias is generated with a pair of precision 5V voltage references, whose outputs
are connected across a variable resistor such that the wiper terminal of the variable resistor
can be anywhere in the range ±5V.
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E.4 Thermistor Readout

Environmental temperature monitoring, both of the air and of the optical tables, is accom-

plished with thermistors, passive electronic components whose resistances change determin-

istically with temperature. There are a variety of methods to measure these changes in

resistance, and we make use of a Wheatstone bridge resistor configuration, capable of sensi-

tive measurements via the differential readout. In a Wheatstone bridge, a constant voltage

source drives two parallel paths of resistors, where each path consists of two resistors in

series. Assuming all of the resistances are identical to begin with, subsequent changes in

resistance result in a differential voltage between the midpoints of these two paths. Both

resistances along one path are assumed to be known, while the second path consists of a

variable resistor and the thermistor itself. The known resistances and the midpoint value of

the variable resistor are all set to 10 kΩ, while the thermistor (Omega, SA1-TH-44006-40-T)

also has a nominal resistance of 10 kΩ at room temperature.

As changes in temperature raise and lower the thermistor’s resistance, the differential

voltage across the bridge changes, where a 0V signal is expected at room temperature. This

differential voltage is then measured by an instrumentation amplifier and then output to

the dedicated environmental monitoring computer. The variable resistor can be adjusted to

tune an offset voltage, which is necessary given that the cRIO module for the environmental

monitoring computer (see Appendix D) has ADCs with a range of 0V to 5V. The PCB for

the thermistor readout includes 5 channels, and Figure E.6 details a schematic of one such

channel.
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Figure E.6: A schematic of the Wheatstone bridge readout for a single thermistor. The dif-
ferential voltage is measured and amplified by an instrumentation amplifier, and is expected
to be 0V at room temperature and with the variable resistor set to 10 kΩ. The bridge can
be biased to produce a positive-definite voltage by adjusting this variable resistor.
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Appendix F

The Cosmological Constant

Although there are a variety of theories that can result in modifications to the inverse square

law of Newtonian gravity (see Chapter 6), some of the most compelling are those that can

answer open questions in physics, of which there are many. Of particular interest to the

author are those theories that can bridge cosmology and with small-scale physics, even if

only in some small way.

Cosmology can be thought of as the study of both the origin and fate of the observable

universe, in the broadest sense possible. The basic picture of cosmology is built upon

solutions to Einstein’s equations of General Relativity, and posit that the universe is a

continuous fluid with just a few distinct constituents. The different components of the fluid

(to be formally introduced below: matter, dark matter, dark energy) interact only through

their effects on the nature of our spacetime.

This description has proven to very closely match observations of the universe made

from Earth, but necessarily invokes the existence of dark matter and dark energy, both

which remain elusive and have not been “detected” aside from their presumed effect on the

nature of our universe at the largest scales.

F.1 Historical Context

Shortly after his original formulation of General Relativity [139] in 1915, Albert Einstein

came to the conclusion that his description of a dynamic universe was incorrect, and thus

introduced into his equations the famous, and somewhat contrived at the time, cosmological

constant Λ, with a very specific value intended to counteract the force of gravity and produce
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a static and perpetual universe [225]. This was, however, at odds with the work of Vesto

Slipher [226, 227] who, by measuring (and discovering!) the Doppler shift of stellar spectra,

observed that nearly all nearby galaxies were in fact receding from the Milky Way. Although

the implications weren’t immediately obvious to Slipher and colleagues, this was some of

the first evidence of an expanding universe.

Further theoretical work, performed independently by Alexander Friedman [228] and

Georges Lemaître [229], demonstrated that a dynamical and expanding universe can be con-

sistently described by the equations of General Relativity, assuming that on very large scales

of order 100Mpc that the universe is homogeneous and isotropic. In fact, the extrapolation

of an expanding universe backward in time led Lemaître to hypothesize the “primeval atom”,

which marked the beginning of the well-known Big Bang Theory to describe the origins of

the observable universe.

It wasn’t until 1929, however, that Edwin Hubble was able to combine measurements

of galactic distances, using the period-luminosity relationship of Cepheid variable stars dis-

covered by Henrietta Leavitt [230, 231], with Slipher’s redshift measurements in order to

unequivocally establish that the universe was indeed expanding. This was made clear by

an observed linear relationship between distance and radial velocity of nearby galaxies, the

latter quantity being derived from redshift measurements [232]. From this linear relation-

ship, Hubble extracted the Hubble constant H0 ∼ 500 km/sMpc, although more accurate

measurements of galactic distance brought this number closer to 100 km/sMpc. All in all,

this result would seem to imply that Λ itself is a useful parameterization as an extension to

General Relativity, but that the value proposed by Einstein was possibly incorrect.

Since that initial discovery, successively more advanced cosmological observations have

indicated that the universe is not only expanding with H0 ≈ 70 km/sMpc, but that the

rate of expansion is accelerating [147, 165, 233, 234]. Nothing in either the Standard Model

or General Relativity can readily explain this observation. Instead, the currently accepted,

macroscopic description of the universe assumes that the accelerating expansion is driven

by “dark energy”, whose exact nature remains unknown. Essentially, dark energy is concep-

tualized as the ubiquitous vacuum energy of an undetected field (or fields), whose effect at

cosmological scales can be parameterized with the cosmological constant Λ, appearing as a

source term in the equations of General Relativity.

A number of potential solutions have been proposed that would give rise to the observed

expansion, and “explain” the cosmological constant. Interestingly, many of these solutions
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also have observable consequences in the short-distance regime, where techniques using

optically levitated microspheres as force sensors may become useful.

F.2 A Friedman Universe

In order to quantify some of these effects, a bit of math must be introduced. The interested

reader can find all of the following information worked in much more detail in References [185,

235], and this should serve only as a primer. It is assumed that the reader has a rudimentary

knowledge of General Relativity, such as familiarity with concepts like the Einstein field

equations, the metric tensor, causality, and the like.

To begin, make the assumption that at very large length scales, the universe is homoge-

neous and isotropic, allowing a conceptualization wherein the universe is a fluid of matter

and energy. This allows one to write a spacetime metric of the form,

ds2 = a(t)2ds23 − c2dt2, (F.1)

where a(t) is a scale factor that describes how the proper distance between any two points in

spacetime evolves as the universe expands or contracts, and a(t = now) = 1 by construction.

This is the famous Friedman-Lemaître-Robertson-Walker metric assumed in cosmology, and

the scale factor is directly related to the redshift, z = 1 − λobserved/λemitted, commonly

measured by astronomers (such as Slipher) via the expression a = (1 + z)−1. If one inserts

this metric into Einstein’s field equations (including the cosmological constant Λ), using the

stress-energy tensor of a fluid, it is possible to relate the time-evolution of a(t) to density

and pressure of the universe, formalized in the Friedman equations:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ+

Λc2

3
− kc2

a2

Ḣ +H2 =
ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
,

(F.2)

where H is the Hubble parameter, ρ and p are the volumetric mass density and pressure

of the universe, respectively, G is Newton’s gravitational constant, c is the speed of light,

k is constant describing the large-scale curvature (in a differential geometry sense) of the

universe, and the dots represent time derivatives. The first equation can be understood as

a measure of the expansion rate since it describes ȧ, while the second equation is related to
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the acceleration of the expansion ä.

Sometimes, the cosmological constant is omitted from the full equations and instead

incorporated into the total density and pressure of the universe,

ρ→ ρ− Λc2

8πG
and p→ p+

Λc4

8πG
, (F.3)

such that the cosmological constant can be thought of as peculiar form of energy, “dark

energy”, wherein pΛ = −ρΛc2. The total density and pressure of the universe are then

sums of the constituent densities and pressures, respectively. Two things should be noted

here. Firstly, note that a sufficiently large negative pressure in the Friedman equations,

ptot > −ρtotc2/3, will drive accelerated expansion since (ä/a) > 0, and dark energy has

a strictly negative pressure under our construction. Secondly, this is only one particular

description of dark energy, and a necessarily simple one. More complex models often invoke

a dark energy equation of state: pΛ = w(z)ρΛc
2, where w(z) is a parameter that may depend

on the redshift z, and thus the age of the universe.

Maintaining a constant value of w(z) = −1, which is generally in line with the concept

of inflation in the early universe, if it is further assumed that the universe is flat, k = 0, a

reasonably well-supported assumption in light of recent measurements [146, 147, 165], then

the first Friedman equation can be used to derive a critical total density (including Λ as in

Equation (F.3)) consistent with the observed expansion,

ρcrit =
3H2

0

8πG
≈ 9.2× 10−27 kg/m3

≈ 5−6 p+/m3,

(F.4)

where if ρtot > ρcrit, the universe is said to be “closed” and will eventually collapse back

into itself by gravitational interaction, while if ρtot < ρcrit, the universe is said to be “open”

and will continue expanding forever (where H → 0 as t → ∞ is included in this latter

category). The first Friedman equation can be rewritten by defining a density parameter

Ω = ρ/ρcrit, and separating the disparate terms from the constituents. On cosmological

scales, the universe can be divided into three categories of mass-energy based on the nature

of their contributions to the stress-energy tensor:1

1In complete descriptions, there is also a density parameter related to the curvature of the universe, k,
but given that current measurements suggest k = 0 [146, 147, 165], we will work from this assumption.
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1. Massive particles/matter - both baryonic and dark matter

2. Relativistic particles/radiation - photons and neutrinos

3. Dark energy - Λ

Which leads us to a density evolution equation,(
H

H0

)2

=
ΩR

a4
+

ΩM

a3
+ΩΛ, (F.5)

where ΩR, ΩM = Ωb+Ωc, and ΩΛ are the density parameters for radiation, matter (baryonic

and cold dark matter), and dark energy, respectively. The massive term ΩM includes a single

massive neutrino eigenstate with Σmν = 0.06 eV, although the full ΛCDM model includes

3 relativistic degrees of freedom corresponding to the 3 species of neutrino [147, 235].

The density evolution equation is derived assuming that matter density scales as ρM ∝
a−3 since a describes the expansion of spatial coordinates, and also assuming that radiation

scales as ρR ∝ a−4 with a−3 again coming from the expansion of spatial coordinates and

another a−1 from the change in wavelength since photon energy is given by E = hc/λ. At

late times, a ≥ 1 and the dark energy/cosmological constant term clearly dominates.

Although this is by no means a complete representation, these equations are the basis

for ΛCDM cosmology, the reigning description of our universe at the largest scales.

F.3 Observations in Our Friedman Universe

These equations are all well and good, but one might ask how an experimentalist can get a

handle on the quantities involved and test this description of the universe. The usual pro-

cedure involves first developing a model for some collection of observables where a number

of free parameters inform the structure of this model, then the model is fit to the measured

data in order to extract best-fit values of the parameters, potentially subject to constraints

from first principles or other related measurements. While more modern observations fol-

lowing the form of Slipher and Hubble allow precise determinations of the local value of

H0 [165, 233], robust extraction of the density parameters requires a different technique,

governed by a different model. In particular, the cosmic microwave background (CMB) and

baryon acoustic oscillations (BAO) may help ferret out the details.



260 APPENDIX F. THE COSMOLOGICAL CONSTANT

Briefly, in the wake of the Big Bang and after neutrino de-coupling, the universe was a hot

dense plasma of photons, baryons, and dark matter. The plasma is thought to have exhibited

density fluctuations that trace their origin to quantum fluctuations during the inflationary

period immediately after the Big Bang. Outward photon pressure in the over-dense plasma

regions, combined with the gravitational attraction toward the centers of the over-dense

regions, resulted in acoustic oscillations of the plasma, propagating radially outward from

the centers of the over-dense regions.

As the universe continued expanding, eventually the average energy density fell suffi-

ciently to allow electrons and protons to bind and form neutral hydrogen. The hydrogen

atoms were typically in excited electronic states, and their relaxation to the ground state in-

volved the emission of photons. Because this recombination (a historical misnomer given the

electrons and protons had never been previously combined) necessarily reduced the number

of free electrons, photons, especially those emitted from the de-excitation, streamed freely

without significant matter interactions and thus preserved information about the state of

the universe at the epoch of recombination.

An immediate consequence of photons de-coupling from the primordial plasma is that

the acoustic oscillations of the plasma no longer had a driving source of outward pressure,

and thus the pattern of baryon density induced by the oscillations, BAO, was preserved as

the universe continued to expand. Simultaneously, free-streaming photons emitted during

recombination were subsequently redshifted by the expansion, all the way into the microwave

spectrum where they’re observed today as the CMB. This is a relatively simple picture

that serves our purposes well, but the interested reader can find a much more detailed

treatment in some of the first manuscripts on recombination [236, 237], as well as some more

contemporary works which include a focus on calculation for the inevitable comparison to

measurement [238–241].

Importantly, if one assumes a Friedman universe described by the equations from the

previous section, then various properties of the observed CMB, as well as the large-scale

structure of matter density encoded by the BAO, are directly related to the values of H0,

ΩM = Ωb+Ωc, ΩΛ, and other cosmological parameters. This was the impetus for a number

of ground-based galaxy surveys and satellite-based microwave telescopes, most recently the

Baryon Oscillation Spectroscopic Survey (BOSS, part of the Sloan Digital Sky Survey) [146]
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and the Planck observatory [147]. Their most recent data releases gave the following values,

H0 = (67.66± 0.42) km/sMpc

ΩM = 0.321± 0.013 ΩΛ = 0.6889± 0.0056.
(F.6)

The energy density of the radiative components, ΩR, is degenerate with other param-

eters that inform the structure of the CMB, and thus is not directly extracted from the

Planck results. However, it can be derived briefly by considering the two most significant

contributors: the CMB photons themselves, as well as the cosmic neutrino background,

sometimes called relic neutrinos. The latter population arises from a similar mechanism as

that which generates the CMB, where the energy density of the expanding universe lowers

sufficiently such that weak-scale interactions between neutrinos and protons/neutrons that

were in thermal equilibrium eventually “freeze-out”, and the neutrinos propagate freely [242–

244].

If a thermal population of CMB photons is assumed, with temperature Tγ = (2.7255±
0.0006)K [245], the Stefan-Boltzmann Law for black-body radiation, integrated over the sur-

face of the black-body, can be used to compute the associated energy density as Uγ = 4σT 4
γ /c.

Because neutrinos were relativistic prior to the epoch of recombination, their energy density

is related to the photon energy density by the expression Uν = Neff(7/8)(4/11)
4/3Uγ [242,

243] where Neff = 3.046 [147] is the effective number of relativistic particle species (aside

from photons). The number is slightly larger than 3 because the neutrino decoupling is

more complicated than the simple picture painted here [238, 242]. The results can then be

compared to the critical density to determine ΩR = Ωγ +Ων ,

Ωγ =
ργ
ρcrit

=
Uγ

c2
· 8πG
3H2

0

=⇒ Ωγ ≈ 5.4× 10−5 Ων ≈ 3.7× 10−5.

(F.7)

Thus, the radiative terms are found to smaller than the measurement uncertainty on ΩM ,

and are often ignored when considering late-time behavior of the universe. It is dark energy

and the cosmological constant Λ that play a significant role in the fate of our universe,

especially at the current epoch with a = 1 (see Equation (F.5)). Most investigations of

Λ to date have necessarily been carried out with astronomical observations, but there are

intrinsically compelling reasons to investigate Λ at other length-scales.
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F.4 Relevant Length Scales

With the Planck and BOSS results in hand, we can begin to consider how laboratory ex-

periments might probe Λ. Since observations currently support that the universe is flat, the

mass-energy density of dark energy can be calculated from the value of the critical density

as U = Ωρcritc
2, and thus,

UΛ = ρΛc
2 = ΩΛ

(
3H2

0

8πG

)
c2 ≈ 5.32× 10−10 J/m3. (F.8)

Here, one must take a small leap of faith. Despite the fact that dark energy does not

appear to behave like any other forms of mass-energy (in particular pΛ = −ρΛc2), let’s

suppose it’s another quantum field, call it ϕ, with the usual concepts of quantization and

mass. A dark energy quanta with rest energy EΛ would thus have a Compton wavelength

lΛ = ℏc/EΛ.2 If it is further assumed that any quanta of this field are homogeneously

distributed, a relevant energy scale can be computed from the mass-energy density given by

the Planck result:

EΛ = UΛl
3
Λ = UΛ

(
ℏc
EΛ

)3

=⇒ EΛ =
[
UΛ (ℏc)3

]1/4 ≈ 3.6× 10−22 J ≈ 2.2meV.

(F.9)

This is sometimes referred to generically as the “dark energy scale”, which has an asso-

ciated length scale lΛ,

lΛ =
ℏc
EΛ

=
ℏc
UΛl3Λ

=⇒ lΛ =

(
ℏc
UΛ

)1/4

≈ 88 µm.
(F.10)

Following the arguments presented in References [140, 141], at distances above this

length-scale lΛ, the primary effect of the field ϕ is on the vacuum energy density and pressure,

i.e. it produces the requisite energy density to explain measurements of ΩΛ from cosmology.

By contrast, at distances below lΛ the dynamics of ϕ become important, and the field itself

may couple to matter, where the nature of this coupling can vary significantly depending
2Despite the Compton wavelength usually being defined with the non-reduced Planck constant (i.e. h

not ℏ), the convention in cosmology appears to make these calculations with ℏ. We follow this convention
for the sake of consistency.
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on the construction of ϕ. It should be noted that some string theories and modified gravity

theories do not necessarily require an entirely new field, as will be discussed shortly, but

there are a wealth of proposals that introduce a new field with a Compton wavelength of

order lΛ in order to explain the cosmological constant, and this construction leads to a very

natural parameterization.

Since the cosmological constant is fundamentally related to General Relativity and thus

gravity, it is instructive to compare the length scale lΛ to another fundamental scales as-

sociated with gravity: the Planck length. Consider a particle of mass m, with Compton

wavelength λc = ℏ/mc. The Schwarzschild radius rs associated with a spherical mass m,

i.e. the event horizon of a non-rotating black hole of mass m, is given by rs = 2Gm/c2. If

the two values are assumed to be equal, λc = rs ≡ lP , a scale at which quantum effects of

gravity should become readily apparent, and use the two expressions to eliminate the mass,

m =
lP c

2

2G
=

ℏ
lP c

=⇒ lP ≈
√
Gℏ
c3

≈ 10−35 m, (F.11)

where we’ve dropped the factor of 2 for simplicity, as lP is then just a product of fundamental

constants. Comparing this quantity to the dark energy scale: lP /lΛ ∼ 10−31, a monstrous

difference. The cosmological constant is often interpreted very simply as a vacuum energy

of some gravitational field, while the Planck length should represents a characteristic scale

for vacuum fluctuations of a quantum gravitational field. Naïvely, one would expect these

numbers to be the same, but it is clear that this is far from the case. The mismatch in

scales is often called the “Cosmological Constant Problem”, which still has no satisfactory

solution.
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Appendix G

Attractor and Shield Fabrication

A number of nanofabricated devices have been designed and fabricated specifically for use

in this collection of work, including the source/attractor masses used to search for both

screened interactions associated to dark energy (Chapter 7) and non-Newtonian gravity

(Chapter 8), as well as the free-standing electrostatic shield implemented in the latter of

the two searches. The fabrication of the the attractor masses was developed initially by

the author’s predecessor Alexander Rider, together with Qidong Wang, a collaborator based

at The Institute of Microelectronics of the Chinese Academy of Sciences, while significant

improvements were driven by the inseparable contributions from the collaboration between

the author and A. Rider. Fabrication of the free-standing electrostatic shield makes use of

a number of processes that had been developed for the attractors, although the synthesis

of the processes into a coherent recipe, as well as the use of a few new techniques, was

completed primarily by the author, with the invaluable assistance of Alexander Fieguth.

Nearly every fabrication process detailed here was performed in the nano@Stanford labo-

ratories, while device characterization was performed in the Stanford Nano Shared Facilities

(SNSF), both of which are supported by the National Science Foundation as part of the

National Nanotechnology Coordinated Infrastructure under Award No. ECCS-1542152. A

select few processes were performed in-house, rather than in the dedicated facilities.

Generically speaking, the knowledge and tools made accessible through the nano@Stanford

labs are exceptional resources for research and development of niche fabrication tasks. There

are a wide variety of instruments, some that make use of “tried and true” techniques, as well

as instruments closer to the forefront of nanofabrication as a field. The performance and

limitations of the instruments are generally well-known, allowing users (such as the author

265
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and collaborators) to step-in with minimal process development and/or refinement.

As a result, the author’s knowledge of the finer details of the fabrication (such as the

underlying chemistry, how the process scales with certain parameters, and even some of the

underlying physics), is limited. Often times, only an effective understanding is necessary,

especially if the desired fabrication doesn’t push the boundaries of the field. As an example,

when depositing photoresist on a silicon wafer, knowing details of the viscosity of a standard

photoresist and it’s adhesion to various surface types is unimportant, as the staff members of

the nano@Stanford labs (as well the manufacturers of the tools themselves) have tuned the

instruments such that a user can request a “1.6 µm layer of SPR3612”, and the tool will do it.

Of course, knowing more about the fundamentals of the process can help when adjustments

are needed to better achieve one’s goals, but these fundamentals are not usually investigated

until they become explicitly necessary in order to surmount a difficulty and make progress.

G.1 Basic Processes

As written and used, the fabrication recipes can have close to 100 individual steps. However,

many of these steps are repeated in chunks, which allows for a natural structuring of the

recipe into more basic processes. For clarity, number of these processes will be defined

and assigned specific names, so that longer recipes can be constructed with some degree of

brevity. Individual processes will be given a name, such as “process()”, their individual

steps will be described, and then they will be strung together into complete recipes.

In general, the subtleties of using ANY process/tool involved in nanofabrication are

great, and success only comes with experience and good training. The same can be said for

ensuring chemical compatibility between containers/vessels/baths, their intended contents,

and any tools that may come into contact with the contents, which is left as an exercise for the

readers. As such, the contents of this Appendix should not be taken as a complete resource

for anyone trying to duplicate and/or adapt these processes, but rather as a rough outline,

with some important feature or precautions mentioned. Any proper facility (assuming the

nano@Stanford labs are a reasonably representative set of examples) will not only have

significant documentation on best practices, but will also require some degree of training

before a process can be completed by a new user. Performing processes on cheap dummy

wafers is also a standard practice, so that things like etch rates can be characterized based

on current conditions of the tool. Thus, it doesn’t make sense to include every possible
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detail here. The Stanford Nanofabrication Facility (SNF) website [246], is a reasonably

comprehensive resource and, where appropriate, includes links to other external sites with

pertinent information.

G.1.1 Cleaning

We begin by defining a number of cleaning processes that are used throughout and enumer-

ated in Table G.1. These include a gentle de-ionized (DI) water rinse, an aggressive acid

cleaning, and a more general multi-step cleaning, primarily used before the initial process-

ing. The usefulness and applicability of the DI rinse should be self-evident. The aggressive

acid clean is primarily for removing photoresist and polymer residue after an etching or

deposition step, but will assuredly attack exposed metals and should thus be used only in

the appropriate context. The final multi-step process, often called the RCA clean [247], was

developed in 1970 as a standard method to prepare wafers. The first step serves to remove

organic contaminants and particulates; the second step removes oxides allowing access to

the bare silicon underneath; the third and final step removes metallic contaminants and

passivates the surface of the wafer. The RCA clean can also be used as an intermediate

cleaning step, provided that any deposited metals can withstand minor etching.

The majority of the cleaning procedures are performed in a dedicated wet-bench, specif-

ically for use with corrosive chemicals. Proper personal protective equipment is critical to

perform these tasks safely, as well as extreme care and caution, given the significant hazards

present. Standard procedures must be strictly adhered to, in order to protect oneself as well

as others. If in doubt, don’t do it.

Table G.1: Cleaning processes.

Process
Tool name

Individual steps involved

continued on next page
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continued from previous page

spin_rinse_dry()

SRD

Basic water cleaning for wafers, usually initial and/or final
step. High throughput automated tool

1. Continuously rinses wafers with DI water, low-velocity
spinning to ensure full coverage

2. Medium-velocity spinning to remove most water
3. High-velocity, long-duration spin for complete drying

piranha_clean()

wbflexcorr

Aggressive and comprehensive acid cleaning for wafers. Resist
and post-etch/post-deposition cleaning

1. Fill quartz bath 9:1 sulfuric acid:H2O2

2. Raise temperature to 120 °C, submerge wafers for 20min

3. Dump rinse,a 5 times
4. spin_rinse_dry()

rca_clean()

wbflexcorr

RCA Corporation standard cleaning procedure for new wafers
1. SC1: quartz bath 5:1:1 H2O:H2O2:NH4OH
2. Raise temperature to 50 °C, submerge wafers for 20min

3. Dump rinse, 5 times
4. Fill Teflon bath 50:1 H2O:HF
5. Submerge wafers for 20min

6. Dump rinse, 5 times
7. SC2: quartz bath 5:1:1 H2O:H2O2:HCl
8. Raise temperature to 50 °C, submerge wafers for 20min

9. Dump rinse, 5 times
10. spin_rinse_dry()

aSpecialized bath that fills completely with a large volume of DI water and then drains the entire bath.
This process is usually repeated a number of times.

G.1.2 Lithography

One of the most critical processes in nanofabrication is the use of lithography, which allows a

specific two-dimensional pattern to be worked into the surface of a silicon wafer. Essentially

the process proceeds as follows: photosensitive (or electron-beam sensitive) material called

photoresist (or more generally, resist) is deposited onto the surface of a wafer. With appro-

priate masking or localization, specific parts of the resist surface can be “exposed”, usually

either to ultra-violet (UV) photons or an electron beam. The surface of the now-exposed

resist is then “developed”, wherein the portions that have been exposed are removed (using
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a positive resist), or the portions that haven’t been exposed are removed (using a negative

resist).

Once the resist has been developed, the surface directly beneath has been partially ex-

posed in a very specific pattern. Layers of the wafer can then be etched following this pattern

of exposed and developed resist, or further layers can be deposited in the pattern set forth

by the lithography. Repeated lithography/etching/deposition is the core of nanofabrication,

which is really made possible by the lithography itself.

In the fabrication procedures described here, we will make use of photolithography specif-

ically, employing photoresist that is sensitive to UV light. The processes used are detailed

in Table G.2. Historically, photolithography has required the use of “masks”, where some

desired pattern is first drawn onto a transparent substrate, using opaque materials to de-

fine the pattern. A photoresist-coated wafer is then exposed by shining a UV lamp at the

wafer, with the mask in between such that it casts a shadow. An example masking material

is chrome or iron oxide deposited on a quartz substrate. Maskless photolithography is a

relatively new field, made accessible by the development of UV diode lasers which can be

focused to small spot sizes in order to achieve direct-write capability.

Table G.2: Processes related to photolithography. All such processes should be undertaken in
areas dedicated to photolithography, in order to avoid accidental exposure of the photoresist.
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Process

Tool name
Individual steps involved

vapor_prime()

YES oven

Automatic dehydration and wafer priming for optimal
photoresist adhesion

1. spin_rinse_dry()

2. Dehydration in N2 at 150 °C
3. Alternate N2 and vacuum a few times
4. Expose heated wafers to HMDSa vapor
5. Remove HMDS vapor, alternate N2 and vacuum

resist_coat(

resist_type,

thickness )

svgcoat

Photoresist spinning, high throughput automated tool
1. vapor_prime()

2. Place sender (with wafers to be coated) and receiver
cassettes in designated locations

3. Select preset recipe, ensuring that it includes EBRb

4. Initiate processing and carefully monitor throughoutc

5. Includes medium- and high-velocity spinning steps for
uniform resist distribution

continued on next page

aHexamethyldisilazane - a adhesion promoter.
bEdge bead removal - cleans photoresist from a ring around the edge of the wafer so that downstream

tools can handle/move the wafer about without touching the “sticky” resist.
cFor recipes using viscous photoresist for thick layers (such as SPR220-7), extra care must be taken so

that near the end of the spinning cycle, the photoresist nozzle doesn’t drip on the coated wafer.
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continued from previous page

resist_expose(

mask_name,

wavelength,

intensity,

duration,

cycles,

delay )

karlsuss

Contact mask alignmenta for photoresist exposure. Uses
prefabricated chrome-on-quartz hard masks

1. Clean masks, first with solvent rinses (acetone, then
isopropanol, then methanol).

2. Dry masks with N2 by “pushing” methanol droplets to
the bottom edge (to be absorbed by cleanroom wipe)

3. Finish with dedicated mask cleaner, using DI water and
high-velocity rotation

4. Program tool with desired exposure parameters:
wavelength/intensity limited control;
duration/cycles/delay complete control

5. Install mask in tool, ensuring operation of vacuum chuck
6. Locate alignment marks on mask
7. Install resist-coated wafer with appropriate chuck
8. Co-align wafer marks with mask marks
9. Bring mask/wafer into contact, expose unmasked region

10. Post-exposure bake if necessary

continued on next page

aDirect-write, maskless exposure technologies exist and would likely be optimal for the scale of features
we are fabricating and the expected wafer throughput (<10), but the author was not trained on these tools,
and the capabilities of the “old-school” contact aligner were more than sufficient.
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continued from previous page

resist_develop(

resist_type,

thickness )

svgdev

Photoresist development, high throughput automated tool
1. Place sender (with exposed wafers to be developed) and

receiver cassettes in designated locations
2. Select preset recipe, dependent on resist type/thickness
3. Initiate processing and carefully monitor throughout
4. Wafers are lightly baked (recipe dependent), covered

with developer solution for a set duration, then rinsed to
complete the process

5. Assess development with optical microscope
6. spin_rinse_dry()

G.1.3 Deposition

Lithography is usually a precursor step to either an etch or a deposition, as the process

imprints a very specific pattern onto the resist, allowing selective and directed modifications

to the wafer surface beneath the resist. Once a pattern has been drawn, material can be

deposited in the form of that pattern in order to build a device, such as a metal deposition

forming a surface electrode or electrically connecting features to one another on the wafer.

Although the list of materials that one can deposit is expansive, very common depositions

include oxides (such as SiO2, or Al2O3 and other metal oxides), metals, and nitrides. The

fabrication processes detailed here are restricted to SiO2 and pure metals, with two distinct

deposition techniques for each type of material.

For SiO2, thermal oxides and plasma-enhanced chemical vapor deposition (PECVD) are

employed. In the former process, a wafer is subjected to temperatures of ∼1000 °C in the

presence of molecular oxygen or water vapor for an extended period of time, which oxides

the outermost layer of the wafer, on all sides. For the latter process, a mixture of gases is

ignited into a plasma, and the constituent charged particles are electrostatically accelerated

toward the surface of a wafer where they adsorb and react to deposit a material. PECVD is

a versatile technique that can also grow nitrides and carbides with the appropriate reactant

gases.

Metal depositions are historically performed with either evaporation or sputtering, the

former being very directional and the latter intentionally less so. An evaporation chamber

usually contains some sort of ablation mechanism wherein, for example, a reservoir of the
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desired metal is evaporated by an electron beam. If the wafers are positioned above the

metal target, with their device side facing down, the evaporated metal atoms will impact

the surface and adhere, resulting in a uniform layer, with directional deposition a result of

the usually long (∼0.5m) distance between the electron-beam source, target, and wafers to

be plated. Sputtering involves generating a localized plasma above the surface of a desired

deposition material, where accelerated particles within the plasma kick off some of the

target material, which is then “swirled” around a vacuum chamber with a magnetic field.

By rotating the wafer(s) to be coated in the presence of this swirling plasma, nominally

uniform coverage is achieved on all surfaces, unless there are some high aspect ratio (≳ 5)

features.

Table G.3: Processes related to deposition.

Process
Tool name

Individual steps involved

thermal_oxide(
thickness )

thermco4

Oxidize the outermost layer of a silicon wafer to produce a
uniform thermal oxide layer.

1. piranha_clean()a

2. rca_clean()

3. Program furnace recipe for desired oxide thicknessb

4. Once furnace boat is fully extended, load wafers with
quartz vacuum wand

5. Initiate thermal processing
6. When completed, assess oxide thickness

continued on next page

aThese cleaning steps are recommended generically to prepare surfaces for a subsequent deposition.
However, if the wafer has photoresist or other sensitive layers, these cleaning steps may not be appropriate.
Process compatibility should be ensured before executing initial cleaning steps.

bRecipe depends on wafer crystal orientation, wet vs. dry environment, furnace temperature, thickness
of pre-existing oxide layer [248].
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continued from previous page

pecvd_oxide(
thickness )

ccp-dep

Plasma-enhanced chemical vapor deposition of SiOx, with
parameters such that x→ 2

1. piranha_clean()

2. rca_clean()

3. Bake at 110 °C for 10min

4. Load chamber without any wafers
5. Run SF6 and N2O plasma chamber clean 10 min/µm of

previous recipe
6. Load wafers (max of 4) with deposition side up,

including dummies to fill platen
7. Run recipe “SIO350-0”
8. Remove wafers and rerun cleaning recipe

metal_evap(
species,
thickness )

innotech

Electron-beam evaporation of metals or metal-oxides,
directional deposition

1. piranha_clean()

2. rca_clean()

3. Remove blanks in wafer platen, insert wafers with
deposition side down

4. With chamber evacuated, initiate platen rotation
5. Turn on electron beam and steer to target crucible

location (with metal)
6. Wait until thickness readout reaches desired level
7. Turn off electron-beam and remove coated wafers

continued on next page
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continued from previous page

metal_sputter(
species,
thickness )

lesker-sputter

Magnetron sputtering tool for metal or metal-oxide
non-directional deposition

1. piranha_clean()

2. rca_clean()

3. Load wafer onto standard chuck (or load custom device
mount) in load-lock, bring to process chamber when
vacuum pressure conditions are met

4. Configure recipe parameters for desired thickness, i.e.
RF power and plasma pressure

5. Start recipe, using viewport to confirm plasma activity
and platen rotation.

6. Remove wafers once automated recipe is complete

metal_plating(
species,
thickness )

Custom tool
(not SNF)

Electroplating to build structures from evaporated seed layers
1. spin_rinse_dry()

2. Package appropriately for removing from cleanroom
environment

3. Install wafer into plating apparatus, fill with filtered
plating solution

4. Use new gold leads (no buildup) to make electrical
contact with wafer

5. Initiate stir bar and pulsed plating supplya to drive
electrochemical cell

6. Assess growth rate with dummy wafer first.
Approximately 150 nm/min with these parameters

aThis process was not optimized significantly, but reasonable parameters are 45mA forward current,
1 kHz and 50 % duty cycle square wave drive.

G.1.4 Etching

Etching is the yin to deposition’s yang. Exactly the same principle holds wherein lithography

defines a specific pattern on a device wafer, which can then be used to etch that pattern into

the surface. Sometimes, a feature is etched into the surface of a wafer, and subsequently

followed by a deposition to fill that etched feature with a desired material. Etching can

either be directed, or isotropic, where directionality is achieved by specifying the direction

of the etchant (i.e. with an electric field), or by taking advantage of the orientation of a
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crystal structure, such as in KOH based etching of silicon wafers.

Nearly all of the etching performed as a part of these fabrication processes is a form of

reactive ion etching (RIE). With this technique, a plasma is formed in a specific combination

of gases, and the constituent ions within the plasma are directed toward the surface to be

etched by an electric field, yielding marginal directionality in the over etch profile. The ions

adsorb into the surface and subsequently react to form a volatile product, which then leaves

surface exposing more of the material to be etched. The process of accelerating ions toward

a surface results in some non-reactive ablation, such that all materials are etched slightly

within such a plasma. Different combinations of gases etch distinct materials differentially,

both via reaction and ablation, allowing selectivity to be tuned to some extent.

One may notice when perusing Table G.4 that there are two oxide RIE etches, cor-

responding to two distinct tools with different gas mixtures and plasma configurations.

Incidentally, both systems yield approximately the same etch rate of SiO2, 200 nm/min, as

well as the same selectivity for SiO2 relative to bare silicon or photoresist, ≳ 2. Different

electric field and plasma configurations have benefits and drawbacks which are beyond the

scope of this work. In practice, both tools have been used for the same oxide etching steps,

where the choice of tool is dictated by whichever is less busy, given that the tools are shared

among a large user base.

A distinct and all-important etching process here is anisotropic deep reactive ion etching

(DRIE), specifically deep silicon etching. This process is time-multiplexed with two etching

modes that result in vertical structures, often with high aspect ratio. The first step is a

standard RIE etch, much like those above, wherein ions from a plasma are directed toward

a surface. A second step deposits a passivation layer, commonly a fluorocarbon like Teflon.

Repeating the first step with the directional etching inherent to RIE preferentially attacks the

bottom of the etched feature and not the passivated sidewalls, first removing the passivation

on the bottom, and subsequently etching the material underneath. Successive repetitions

etch the patterned feature straight down.

Two isotropic etching techniques are used, a hydrofluoric acid vapor etch to remove

sacrificial oxide layers, and a hydrofluoric acid wet etch remove metals, specifically Ti. Both

are relatively straightforward: the wafer to be etched is surrounded by the acid vapor or

submersed in an aqueous bath for a set period of time, then removed and rinsed/cleaned.
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Table G.4: Processes related to etching. Many of the tools used have automated wafer
handling and pre-programmed recipes. Always start from a pre-programmed recipe known
to work for other users, and then tweak as necessary based on dummy wafer performance.

Process
Tool name

Individual steps involved

descum()

drytek2,
oxford-rie,
technics

Basic O2 plasma etch to remove any contaminants that may
have found their way to the wafer surface.

1. RF power and O2 pressure depend on the specific
chamber, which should be known and/or characterized
prior to use

2. For drytek2/oxford-rie: 500W, 150mtorr
3. For technics: 50W, 300mtorr
4. Clean chamber with O2 plasma etch, but no wafers, 5 to

10min

5. Load wafer(s) in requisite position within plasma
chamber

6. Initiate short duration etch, 1 to 2min

continued on next page
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continued from previous page

oxide_rie_ccp(
depth )

oxford-rie

Plasma etch with CHF3 and CF4 in an Argon carrier gas,
performed in a capacitively-coupled plasma chamber. Selective
to SiO2 and other oxides/nitrides.

1. descum()

2. Clean chamber with O2 plasma etch, blank silicon wafer,
10 to 30min with standard cleaning recipe (similar to
descum)

3. Etch dummy wafer to condition chamber before etching
device wafer

4. Gas flow rates for standard oxide etch: 30 sccm Ar,
45 sccm CHF3, and 15 sccm CF4

a

5. Overall plasma parameters: 500W, 100mtorr
6. Backside He cooling at 10 torr with 20 °C setpoint
7. Max etch time ∼20min before another chamber cleaning

is required

continued on next page

asccm - standard cubic centimeter per minute
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continued from previous page

oxide_rie_icp(
depth )

pt-ox

Plasma etch with CHF3 and O2, performed in an
inductively-couple plasma chamber. Selective to SiO2 and
other oxides/nitrides

1. descum()

2. Clean chamber with O2 plasma etch, blank silicon wafer,
10 to 30min with standard cleaning recipe (similar to
descum)

3. Gas flow rates for standard oxide etch: 2 sccm O2 and
45 sccm CHF3

4. Overall plasma parameters: 600W for main plasma,
50W bias point for wafer, 5mtorr

5. Backside He cooling at 5 torr with 10 °C setpoint
6. Max etch time ∼10min before another chamber cleaning

is required

oxide_hf_vapor(
endpoint )

uetch

Isotropic vapor etch using hydrofluoric acid and ethanol.
Extremely high selectivity for oxide

1. piranha_clean()

2. rca_clean()

3. Bake wafer at 250 °C or descum()
4. Select one pre-programmed recipe R1 through R5,

increasing etch rate from 25 nm/min to 150 nm/min at
the cost of uniformity

5. Tune etch time and cycle number, nothing else
6. Run chamber through 10, 60 s cycles with no wafer
7. Insert wafer and run through desired cycles
8. Assess completion and repeat if necessary

continued on next page
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continued from previous page

silicon_drie(
depth )

pt-dse

Time-multiplexed, anisotropic, deep silicon etching with the
Bosch process [92]

1. descum()

2. Run DSE-Clean, O2 plasma recipe for 30min

3. Load either aggressive recipe for ultra-deep backside
etches (DSE-FAT, ∼1 µm/cycle), or sensitive recipe for
fine topside etch (DSE-Nano, ∼100 nm/cycle)

4. Condition chamber with dummy wafer and 20 cycles of
main etch

5. Etch device wafer, no more than 150 cycles
6. Clean chamber for 10min

7. Repeat etch step and cleaning until completed

metal_wet_etch(
depth )

wbflexcorr

Hydrofluoric acid wet etch to remove thin metal layers
1. spin_rinse_dry()

2. In Teflon containers, prepare 20:1:1 mixture of
H2O:H2O2:HF(49%) with an etch rate of 1000 nm/min

for Ti, together with two stages of H2O rinsing
3. Immerse wafer in etch solution and gently stir
4. Rinse in first station, rinse in second station
5. spin_rinse_dry()
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G.1.5 Other processes

A few other processes don’t fit nicely into the above categories and are thus included here.

Table G.5: Miscellaneous processes.

Process
Tool name

Individual steps involved

cmp(
endpoint )

cmp

Chemical mechanical polishing for surface planarization
1. Soak polishing pad with DI water for 30 minutes, scrub

clean
2. For Si polishing, use Ultra-Sol S-10 slurry and prepare

with aggressive mechanical agitation
3. Flush slurry and water lines, active flow rate of ∼few

drops per second
4. Pad conditioning run with slurry active and recipe “Auto

2”
5. Dummy wafer conditioning run with recipe “Auto 3”
6. Load device wafer into chuck and initiate polishing
7. Release wafer from chuck at regular intervals and assess

polishing with optical microscope
8. Typical settings: platen, 100 rpm; polishing head,

60 rpm; polishing pressure, 250 g/cm2; retainer pressure,
350 g/cm2; polishing time, 100 s

9. DO NOT LET SLURRY DRY ON ANYTHING.
LITERALLY IMPOSSIBLE TO REMOVE.
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G.2 Density-Staggered Attractor Recipe

For the scientific program investigating modifications to gravity, we choose to excite an

oscillating gravitational response of a trapped microsphere using a source mass, deemed the

attractor, which has a regularly patterned structure of materials with significantly different

densities. The density modulation is microscopic in scale with periodicity 50 µm, making it

ideal for short-distance modifications to Newtonian gravity. Given the availability of tools

and resources to fabricate mechanical devices of this size, nanofabrication techniques were

used to define the low-density portion of the attractor in silicon (ρSi = 2.33 g/cm3), filling

the voids within the silicon outline with gold (ρAu = 19.3 g/cm3) to produce the high-density

portion of the attractor.

Different metals or substrate materials could also be used, with the expected signal

scaling roughly as ∼∆ρ. However, given the range of densities of materials known to hu-

mankind, one can only gain factors of order unity by optimizing over material parameter

space. Fabrication feasibility, as well as possible backgrounds introduced by materials with

undesirable properties, often plays a more significant role in the design of an attractor mass.

Below is a fabrication recipe using the previously defined steps. This particular recipe

has been adapted slightly from the original detailed in Reference [69], although the end

result should be nearly identical. Step numbering matches that shown in Figure G.1.

(-) Initial cleaning

• piranha_clean()

• rca_clean()

(1) Photolithography for trenches

• resist_coat(SPR3612, 1.6 µm)

• resist_expose(trenches, 365 nm, 15 mW/cm2, 1.5 s, 1, 0)

• resist_develop(SPR3612, 1.6 µm)

(2) Trench etch

• silicon_drie(10 µm), fully through device layer

• piranha_clean()
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(3) thermal_oxide(250 nm)

(4) Deposit electroplating seed layer

• metal_evap(Ti, 20 nm), adhesion layer

• metal_evap(Au, 50 nm)

(5) cmp(remove Au/Ti on topside)

(6) Grow gold in trenches

• metal_plating(Au, 10 µm), filling trenches

• cmp(planarize grown gold with wafer surface)

(7) Photolithography for device outline

• resist_coat(SPR3612, 1.6 µm)

• resist_expose(device outline, 365 nm, 15 mW/cm2, 1.5 s, 1, 0)

• resist_develop(SPR3612, 1.6 µm)

(8) Device outline etch

• oxide_rie_ccp(250 nm), through oxide polishing mask

• silicon_drie(10 µm), again fully through device layer

• piranha_clean()

(9) PECVD oxide hardmask for backside release etch

• descum()

• pecvd_oxide(4 µm)

• piranha_clean()

(10) Photolithography for device release

• resist_coat(SPR220-7, 7 µm)

• resist_expose(device outline, 365 nm, 15 mW/cm2, 2.5 s, 4, 120 s)

• resist_develop(SPR220-7, 7 µm)
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(11) Release etch

• oxide_rie_ccp(4 µm), through pecvd oxide hard mask

• silicon_drie(∼500 µm), fully through handle layer

• piranha_clean()

(12) oxide_hf_vapor(remove buried/sacrificial oxide)

(-) metal_sputter(Ti, 50 nm)

(-) metal_sputter(Au, 150 nm)



G.2. DENSITY-STAGGERED ATTRACTOR RECIPE 285

Figure G.1: Selected steps from the attractor fabrication process, with numbers correspond-
ing to the enumeration in the text. (1) trench lithography, (2) trench etch, (3) grow thermal
oxide, (4) evaporate gold, (5) CMP topside, (6) electroform in trench with CMP after, (7)
outline lithography, (8) outline etch, (9) backside PECVD oxide, (10) release lithography,
(11) deep release etch, (12) HF vapor etch. Devices are then snapped free of the carrier
wafer and sputter-coated. Significantly not-to-scale.
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Figure G.2: Annotated SEM micrographs of a completed attractor device, prior to deposition
of the final metallic coating. Two details show the front face of the attractor with the
characteristic scalloping from the deep silicon etching with the Bosch process [92], as well
as one of the electroformed and polished gold portions of the density modulation. A few
length scales are indicated.
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G.3 Free-standing Electrostatic Shield Recipe

Any application of force-sensing must contend with the possibility of background forces that

may contaminate the measurement. The strong and weak forces are limited to sub-atomic

distance scales and thus do not factor into consideration here, but electromagnetism has an

infinite range and thus will always present some level of background that must be mitigated.

This is especially difficult given that gravity, and gravity-like forces, are weak compared to

electromagnetism.

Electrically neutralizing the test and source masses removes the monopole component

of the associated charge distributions, which is a possible source of significant background

forces. However, permanent higher order moments, dipole/quadrupole/etc., still remain in

silica microspheres and appear to be highly material and manufacturer dependent. Polariz-

ability also complicates this description further, and cannot be assumed to be isotropic, nor

uniform. Clearly a naïve solution is to electrostatically shield the test and source masses

from one another. This has been attempted with a free-standing conductive device, posi-

tioned stationary between test and source masses. The shield is designed with an L-shaped

cross section to simultaneously block retroreflections from the attractor itself, which would

otherwise affect the z position measurement.

Below is a fabrication recipe using the previously defined steps. This particular recipe is

unpublished was developed primarily by the author. Step numbering matches that shown

in Figure G.3.

(-) Initial cleaning

• piranha_clean()

• rca_clean()

(1) thermal_oxide(250 nm)

(2) Photolithography for “pocket feature”

• resist_coat(SPR3612, 1.6 µm)

• resist_expose(trenches, 365 nm, 15 mW/cm2, 1.5 s, 1, 0)

• resist_develop(SPR3612, 1.6 µm)

(3) Etch pocket into oxide hard mask only (to register it’s position)



288 APPENDIX G. ATTRACTOR AND SHIELD FABRICATION

• oxide_rie_ccp(250 nm), stop on silicon

(4) Strip resist then photolithography for channel and device outline

• piranha_clean()

• resist_coat(SPR3612, 1.6 µm)

• resist_expose(trenches, 365 nm, 15 mW/cm2, 1.5 s, 1, 0)

• resist_develop(SPR3612, 1.6 µm)

(5) Channel and device outline partial etch

• oxide_rie_ccp(250 nm), through oxide hard mask

• silicon_drie(3 µm), partially through device layer1

• piranha_clean()

(6) Strip resist completely: piranha_clean()

(7) Simultaneously finish device channel/outline etch and pocket etch

• silicon_drie(22 µm), now fully through device layer

• piranha_clean()

(8) PECVD oxide hardmask for backside release etch

• descum()

• pecvd_oxide(4 µm)

• piranha_clean()

(9) Photolithography for device release

• resist_coat(SPR220-7, 7 µm)

• resist_expose(device outline, 365 nm, 15 mW/cm2, 2.5 s, 4, 120 s)

• resist_develop(SPR220-7, 7 µm)

(10) Release etch

• oxide_rie_ccp(4 µm), through pecvd oxide hard mask
1This etch depth roughly defines how thick the bottom portion of the L-shaped cross-section is.
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• silicon_drie(∼500 µm), fully through handle layer

• piranha_clean()

(11) oxide_hf_vapor(remove buried/sacrificial oxide)

(-) metal_sputter(Ti, 50 nm)

(-) metal_sputter(Au, 150 nm)
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Figure G.3: Selected steps from the free-standing electrostatic shield fabrication process,
with numbers to match the text. (1) Grow thermal oxide, (2) “pocket” lithography, (3)
etch pocket in oxide mask, (4) strip resist then outline lithography, (5) etch oxide hard
mask and partial device layer, (6) strip resist, (7) etch pocket and outline simultaneously
to buried oxide stop, (8) backside PECVD oxide, (9) release lithography, (10) deep release
etch, (11) HF vapor etch. Devices are snapped free of the carrier wafer and sputter-coated.
Significantly not-to-scale.
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Figure G.4: (upper) A schematic depiction of the attractor and shield positioning near
a trapped microsphere, emphasizing the L-shaped cross-section. (lower) Annotated SEM
micrographs of a completed shield device, prior to deposition of the final metallic coating,
with both images using a 40° inclination in viewing angle to make the three-dimensional
structure clearly visible. A detail shows the end of the shield and the symmetric pockets for
this particular device. A few length scales are indicated.
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